如圖,在平面直角坐標(biāo)系中,已知點(diǎn)P(0,4),點(diǎn)A在線段OP上,點(diǎn)B在x軸正半軸上,且AP=OB=t, 0<t<4,以AB為邊在第一象限內(nèi)作正方形ABCD;過(guò)點(diǎn)C、D依次向x軸、y軸作垂線,垂足為M,N,設(shè)過(guò)O,C兩點(diǎn)的拋物線為y=ax2+bx+c.
(1)填空:△AOB≌△       ≌△BMC(不需證明);用含t的代數(shù)式表示A點(diǎn)縱坐標(biāo):A(0,       ;
(2)求點(diǎn)C的坐標(biāo),并用含a,t的代數(shù)式表示b;
(3)當(dāng)t=1時(shí),連接OD,若此時(shí)拋物線與線段OD只有唯一的公共點(diǎn)O,求a的取值范圍;
(4)當(dāng)拋物線開(kāi)口向上,對(duì)稱軸是直線,頂點(diǎn)隨著t的增大向上移動(dòng)時(shí),求t的取值范圍.
(1)DNA或△DPA;;(2)C(4,t),;(3)a>0或a<<a<0;(4)
0<t≤

試題分析:(1)根據(jù)全等三角形的判定定理SAS證得:△AOB≌△DNA或DPA≌△BMC;根據(jù)圖中相關(guān)線段間的和差關(guān)系來(lái)求點(diǎn)A的坐標(biāo):
∵∠DNA=∠AOB=90°,∴∠NAD=∠OBA(同角的余角相等).
在△AOB與△DNA中,∵,∴△AOB≌△DNA(SAS).
同理△DNA≌△BMC.
∵點(diǎn)P(0,4),AP=t,∴
(2)利用(1)中的全等三角形的對(duì)應(yīng)邊相等易推知:OM=OB+BM=t+=4,則C(4,t).把點(diǎn)O、C的坐標(biāo)分別代入拋物線y=ax2+bx+c可以求得確.
(3)利用待定系數(shù)法求得直線OD的解析式.與拋物線聯(lián)立方程組,解得x=0或
對(duì)于拋物線的開(kāi)口方向進(jìn)行分類討論,即a>0和a<0兩種情況下的a的取值范圍.
(4)根據(jù)拋物線的解析式得到頂點(diǎn)坐標(biāo)是.結(jié)合已知條件求得a=,故頂點(diǎn)坐標(biāo)為.由拋物線的性質(zhì)知:只與頂點(diǎn)坐標(biāo)有關(guān),故t的取值范圍為:0<t≤
試題解析:解:(1)DNA或△DPA;.
(2)由題意知,NA=OB=t,則OA=
∵△AOB≌△BMC,∴CM="OB=t." ∴OM=OB+BM=t+="4." ∴C(4,t).
又拋物線y=ax2+bx+c過(guò)點(diǎn)O、C,
,解得.
(3)當(dāng)t=1時(shí),拋物線為,NA=OB=1,OA=3.
∵△AOB≌△DNA,∴DN=OA=3.
∵D(3,4),∴直線OD為:
聯(lián)立方程組,得,消去y,得,
解得,x=0或.
所以,拋物線與直線OD總有兩個(gè)交點(diǎn).
討論:①當(dāng)a>0時(shí),>3,只有交點(diǎn)O,所以a>0符合題意;
②當(dāng)a<0時(shí),若>3,則a<
<0,則得a>.∴<a<0.
綜上所述,a的取值范圍是a>0或a<<a<0.
(4)∵拋物線為,∴頂點(diǎn)坐標(biāo)是
又∵對(duì)稱軸是直線x=,∴a=.
∴頂點(diǎn)坐標(biāo)為:,即
∵拋物線開(kāi)口向上,且隨著t的增大,拋物線的頂點(diǎn)向上移動(dòng),
∴只與頂點(diǎn)坐標(biāo)有關(guān),∴t的取值范圍為:0<t≤
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線經(jīng)過(guò)點(diǎn)A(1,0),B(5,0),C(0,)三點(diǎn),設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且在x軸下方,四邊形OEBF是以O(shè)B為對(duì)角線的平行四邊形.

(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)E(x,y)運(yùn)動(dòng)時(shí),試求平行四邊形OEBF的面積S與x之間的函數(shù)關(guān)系式,并求出面積S的最大值?
(3)是否存在這樣的點(diǎn)E,使平行四邊形OEBF為正方形?若存在,求E點(diǎn),F(xiàn)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商家計(jì)劃從廠家采購(gòu)空調(diào)和冰箱兩種產(chǎn)品共20臺(tái),空調(diào)的采購(gòu)單價(jià)y1(元/臺(tái))與采購(gòu)數(shù)量x1(臺(tái))滿足y1=﹣20x1+1500(0<x1≤20,x1為整數(shù));冰箱的采購(gòu)單價(jià)y2(元/臺(tái))與采購(gòu)數(shù)量x2(臺(tái))滿足y2=﹣10x2+1300(0<x2≤20,x2為整數(shù)).
(1)經(jīng)商家與廠家協(xié)商,采購(gòu)空調(diào)的數(shù)量不少于冰箱數(shù)量的,且空調(diào)采購(gòu)單價(jià)不低于1200元,問(wèn)該商家共有幾種進(jìn)貨方案?
(2)該商家分別以1760元/臺(tái)和1700元/臺(tái)的銷售單價(jià)售出空調(diào)和冰箱,且全部售完.在(1)的條件下,問(wèn)采購(gòu)空調(diào)多少臺(tái)時(shí)總利潤(rùn)最大?并求最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,矩形OABC頂點(diǎn)B的坐標(biāo)為(8,3),定點(diǎn)D的坐標(biāo)為(12,0),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸的正方向勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸的負(fù)方向勻速運(yùn)動(dòng),PQ兩點(diǎn)同時(shí)運(yùn)動(dòng),相遇時(shí)停止.在運(yùn)動(dòng)過(guò)程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=    時(shí),△PQR的邊QR經(jīng)過(guò)點(diǎn)B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過(guò)定點(diǎn)E(5,0)作EF⊥BC,垂足為F,當(dāng)△PQR的頂點(diǎn)R落在矩形OABC的內(nèi)部時(shí),過(guò)點(diǎn)R作x軸、y軸的平行線,分別交EF、BC于點(diǎn)M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4與x軸的一個(gè)交點(diǎn)為A(-2,0),與y軸的交點(diǎn)為C,對(duì)稱軸是x=3,對(duì)稱軸與x軸交于點(diǎn)B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)經(jīng)過(guò)B,C的直線l平移后與拋物線交于點(diǎn)M,與x軸交于點(diǎn)N,當(dāng)以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形時(shí),求出點(diǎn)M的坐標(biāo);
(3)若點(diǎn)D在x軸上,在拋物線上是否存在點(diǎn)P,使得△PBD≌△PBC?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知點(diǎn)A1,A2,…,A2011在函數(shù)位于第二象限的圖象上,點(diǎn)B1,B2,…,B2011在函數(shù)位于第一象限的圖象上,點(diǎn)C1,C2,…,C2011在y軸的正半軸上,若四邊形,…,都是正方形,則正方形的邊長(zhǎng)為
A.2010B.2011C.2010D.2011

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線y=ax2+bx+c(a>0)的對(duì)稱軸為直線x=-1,與x軸的一個(gè)交點(diǎn)為(x1,0),且0<x1<1,下列結(jié)論:①9a-3b+c>0;②b<c;③3a+c>0,其中正確結(jié)論兩個(gè)數(shù)有______個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,一段拋物線y=﹣x(x﹣1)(0≤x≤1)記為m1,它與x軸交點(diǎn)為O、A1,頂點(diǎn)為P1;將m1繞點(diǎn)A1旋轉(zhuǎn)180°得m2,交x軸于點(diǎn)A2,頂點(diǎn)為P2;將m2繞點(diǎn)A2旋轉(zhuǎn)180°得m3,交x軸于點(diǎn)A3,頂點(diǎn)為P3,…,如此進(jìn)行下去,直至得m10,頂點(diǎn)為P10,則P10的坐標(biāo)為(     ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)(-1,0)、(0,3),下列結(jié)論中錯(cuò)誤的是(  )
A.a(chǎn)bc<0B.9a+3b+c=0C.a(chǎn)-b="-3" D. 4ac﹣b2<0

查看答案和解析>>

同步練習(xí)冊(cè)答案