【題目】如圖,AB、AC是⊙O的兩條弦∠A=25°,過點(diǎn)C的切線與OB的延長(zhǎng)線交于點(diǎn)D,則∠D的度數(shù)是 .
【答案】40°
【解析】解:連接OC, ∵CD是切線,
∴∠OCD=90°,
∵∠A=25°,
∴∠COD=2∠A=50°,
∴∠D=90°﹣50°=40°.
所以答案是40°.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用圓周角定理和切線的性質(zhì)定理的相關(guān)知識(shí)可以得到問題的答案,需要掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)通過計(jì)算下列各式的值探究問題:
①= ;= ;= ;= .
探究:對(duì)于任意非負(fù)有理數(shù)a,= .
②= ;= ;= ;= .
探究:對(duì)于任意負(fù)有理數(shù)a,= .
綜上,對(duì)于任意有理數(shù)a,= .
(2)應(yīng)用(1)所得的結(jié)論解決問題:有理數(shù)a,b在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置如圖所示,化簡(jiǎn):--+|a+b|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,填空:
(1)若∠4=∠3,則____∥_____,理由是______;
(2)若∠2=∠E,則____∥___,理由是____;
(3)若∠A=∠ABE=180°,則____∥___,理由是____;
(4)若∠2=∠____,則DA∥EB,理由是____;
(5)若∠DBC+∠_____=180°,則DB∥EC,理由是____;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:
根據(jù)圖中提供的信息,解答下列問題:
(1)補(bǔ)全頻數(shù)分布直方圖
(2)求扇形統(tǒng)計(jì)圖中m的值和E組對(duì)應(yīng)的圓心角度數(shù)
(3)請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=20°,∠AOE=86°,OB平分∠AOC,OD平分∠COE.
(1)∠COD的度數(shù)是______;
(2)若以O為觀察中心,OA為正東方向,射線OD在什么位置?
(3)若以OA為鐘面上的時(shí)針,OD為分針,且OA正好在“時(shí)刻3”的下方不遠(yuǎn),求出此時(shí)的時(shí)刻.(結(jié)果精確到分鐘)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了減輕學(xué)生課業(yè)負(fù)擔(dān),提高課堂效果,我縣教體局積極推進(jìn) “高效課堂”建設(shè).
某學(xué)校的《課堂檢測(cè)》印刷任務(wù)原來由甲復(fù)印店承接,其每月收費(fèi)y(元)與復(fù)印頁(yè)數(shù)x(頁(yè))的函數(shù)關(guān)系如圖所示:
⑴從圖象中可看出:每月復(fù)印超過500頁(yè)部分每頁(yè)收費(fèi) 元;
⑵現(xiàn)在乙復(fù)印店表示:若學(xué)校先按每月付給200元的月承包費(fèi),則可按每頁(yè)0.15元收費(fèi).乙復(fù)印店每月收費(fèi)y(元)與復(fù)印頁(yè)數(shù)x(頁(yè))的函數(shù)關(guān)系為 ;
⑶在給出的坐標(biāo)系內(nèi)畫出(2)中的函數(shù)圖象,并結(jié)合函數(shù)圖象回答每月復(fù)印在3000頁(yè)左右應(yīng)選擇哪個(gè)復(fù)印店?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四邊形ABCD是平行四邊形,下列結(jié)論錯(cuò)誤的是( )
A. 沿AE所在直線折疊后,△ACE和△ADE重合
B. 沿AD所在直線折疊后,△ADB和△ADE重合
C. 以A為旋轉(zhuǎn)中心,把△ACE逆時(shí)針旋轉(zhuǎn)90°后與△ADB重合
D. 以A為旋轉(zhuǎn)中心,把△ACB逆時(shí)針旋轉(zhuǎn)270°后與△DAC重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠CAB=90°,AD⊥BC于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),EC與AD交于點(diǎn)G,點(diǎn)F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1: ,EF⊥CE,求EF:EG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某日的錢塘江觀潮信息如表:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離 (千米)與時(shí)間 (分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時(shí)甲地‘交叉潮’的潮頭離乙地12千米”記為點(diǎn) ,點(diǎn) 坐標(biāo)為 ,曲線 可用二次函數(shù) ( , 是常數(shù))刻畫.
(1)求 的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時(shí),小紅騎單車從乙地出發(fā),沿江邊公路以 千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為 千米/分,小紅逐漸落后,問小紅與潮頭相遇到落后潮頭1.8千米共需多長(zhǎng)時(shí)間?(潮水加速階段速度 , 是加速前的速度).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com