如圖,若直線PA的解析式為y=數(shù)學公式x+b,且點P(4,2),PA=PB,則點B的坐標是


  1. A.
    (5,0)
  2. B.
    (6,0)
  3. C.
    (7,0)
  4. D.
    (8,0)
C
分析:先過點P作PC⊥AB,求出b的值,求出A點的坐標,再根據(jù)P(4,2)求出AC的值,再根據(jù)PA=PB,求出BC的值,即可求出點B的坐標.
解答:過點P作PC⊥AB,
∵解析式y(tǒng)=x+b過點P(4,2),
∴2=×4+b,
∴b=-,
∴A(1,0),
又∵P(4,2),
∴AC=3,
∵PA=PB,
∴BC=3,
∴點B的坐標是(7,0).
故選C.
點評:本題考查了一次函數(shù)的綜合知識,解題的關鍵是過點P作出PC⊥PA,求出A點的坐標,是一道常見的題型,難度不大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,⊙M外接于矩形OABC,AB=3,BC=4,點A在y軸精英家教網上,點C在x軸上.
(1)過點A作⊙M的切線交x軸于點P,求直線PA的解析式;
(2)點F為線段PC上的一點,連接AF,若AF將四邊形ABCP面積平分,求點F的坐標;
(3)如果點E為PA上的一個動點(不運動到點P,點A),直線EF將四邊形PABC的周長平分,設點E縱坐標為t,△PEF的面積為S,求S與t的函數(shù)關系式,并求自變量t的取值范圍;直線EF能否將四邊形PABC的周長和面積同時平分?若存在,請求出直線EF的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•資陽)已知拋物線C:y=ax2+bx+c(a<0)過原點,與x軸的另一個交點為B(4,0),A為拋物線C的頂點.
(1)如圖1,若∠AOB=60°,求拋物線C的解析式;
(2)如圖2,若直線OA的解析式為y=x,將拋物線C繞原點O旋轉180°得到拋物線C′,求拋物線C、C′的解析式;
(3)在(2)的條件下,設A′為拋物線C′的頂點,求拋物線C或C′上使得PB=PA′的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•武漢)如圖,點P是直線l:y=-2x-2上的點,過點P的另一條直線m交拋物線y=x2于A、B兩點.
(1)若直線m的解析式為y=-
1
2
x+
3
2
,求A,B兩點的坐標;
(2)①若點P的坐標為(-2,t).當PA=AB時,請直接寫出點A的坐標;
②試證明:對于直線l上任意給定的一點P,在拋物線上能找到點A,使得PA=AB成立.
(3)設直線l交y軸于點C,若△AOB的外心在邊AB上,且∠BPC=∠OCP,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,若直線PA的解析式為y=
2
3
x+b,且點P(4,2),PA=PB,則點B的坐標是( 。

查看答案和解析>>

同步練習冊答案