請寫出一個(gè)二次函數(shù)y=ax2+bx+c,使它同時(shí)具有如下性質(zhì):
①圖象關(guān)于直線x=1對稱;
②當(dāng)x=2時(shí),y<0;
③當(dāng)x=-2時(shí),y>0.
答:   
【答案】分析:求符合條件的二次函數(shù),只須定頂點(diǎn)坐標(biāo)(1,-2),可用頂點(diǎn)式表示y=a(x-1)2+2即可.
解答:解:因?yàn)棰賵D象關(guān)于直線x=1對稱;②當(dāng)x=2時(shí),y<0;③當(dāng)x=-2時(shí),y>0
由二次函數(shù)的圖象的性質(zhì)可知頂點(diǎn)坐標(biāo)是(1,-2)
答案不唯一,如a=1時(shí),y=x2-2x-1.
點(diǎn)評:主要考查待定系數(shù)法求二次函數(shù)的解析式.當(dāng)知道二次函數(shù)的頂點(diǎn)坐標(biāo)時(shí)通常使用二次函數(shù)的頂點(diǎn)式來求解析式.頂點(diǎn)式:y=a(x-h)2+k或y=a(x+m)2+k (兩個(gè)式子實(shí)質(zhì)一樣,但初中課本上都是第一個(gè)式子).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、請寫出一個(gè)二次函數(shù)y=ax2+bx+c,使它同時(shí)具有如下性質(zhì):
①圖象關(guān)于直線x=1對稱;
②當(dāng)x=2時(shí),y<0;
③當(dāng)x=-2時(shí),y>0.
答:
答案不唯一,如y2=x2-2x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

請寫出一個(gè)二次函數(shù)y=ax2+bx+c,使它同時(shí)具有如下性質(zhì):①圖象關(guān)于直線x=1對稱;②當(dāng)x=2時(shí),y>0;③當(dāng)x=-2時(shí),y<0.答:
 
.(答案不唯一)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

請寫出一個(gè)二次函數(shù),此二次函數(shù)具備頂點(diǎn)在x軸上,且過點(diǎn)(0,1)兩個(gè)條件,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

請寫出一個(gè)二次函數(shù)使得它的圖象滿足:以直線x=-2為對稱軸且有最大值為3,這樣的二次函數(shù)關(guān)系式可以是
y=(x+2)2+3(答案不唯一)
y=(x+2)2+3(答案不唯一)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

請寫出一個(gè)二次函數(shù),此二次函數(shù)具備頂點(diǎn)在x軸上,且過點(diǎn)(0,1)兩個(gè)條件,并說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案