【題目】如圖,已知ABCD,∠E=90°,那么∠B+D等于多少度?為什么?

解:過點EEFAB

得∠B+BEF=180°________________________,

因為ABCD(已知),

EFAB(所作),

所以EF//CD________________________.

________________________(兩直線平行,同旁內(nèi)角互補),

所以∠B+BEF+DEF+D=________°(__________.

即∠B+BED+D=___________°.

因為∠BED=90°(已知),

所以∠B+D=___________°(等式性質(zhì))

【答案】兩直線平行,同旁內(nèi)角互補;如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行;∠D+DEF=180°;360;等式性質(zhì);360;270.

【解析】

EEF平行于AB,利用兩直線平行得到一對同旁內(nèi)角互補,再由ABCD平行,利用平行于同一條直線的兩直線平行,得到EFCD平行,利用兩直線平行得到又一對同旁內(nèi)角互補,兩等式相加,可得出∠B+BED+D=360°,將∠BED度數(shù)代入即可求出∠B+D的度數(shù).

解:過點EEFAB,
得∠B+BEF=180°(兩直線平行同旁內(nèi)角互補),
因為ABCD(已知),
EFAB(所作),
所以EFCD(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行).
得∠D+DEF=180°(兩直線平行,同旁內(nèi)角互補),
所以∠B+BEF+DEF+D=360°(等式性質(zhì)).
即∠B+BED+D=360°
因為∠BED=90°(已知),
所以∠B+D=270°(等式性質(zhì)).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】科技館是少年兒童節(jié)假日游玩的樂園.

如圖所示,圖中點的橫坐標x表示科技館從8:30開門后經(jīng)過的時間(分鐘),縱坐標y表示到達科技館的總?cè)藬?shù).圖中曲線對應的函數(shù)解析式為y=,10:00之后來的游客較少可忽略不計.

(1)請寫出圖中曲線對應的函數(shù)解析式;

(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時,館外等待的游客可全部進入.請問館外游客最多等待多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店欲購進一批跳繩,若購進種跳繩根和種跳繩根,則共需元;若購進種跳繩根和種跳繩根,則共需元.

1)求、兩種跳繩的單價各是多少?

2)若該商店準備購進這兩種跳繩共根,且種跳繩的數(shù)量不少于跳繩總數(shù)量的.若每根種、種跳繩的售價分別為元、元,問:該商店應如何進貨才可獲取最大利潤,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知中,,點、、分別在邊、上,且,請你添加一個條件,使得全等,這個條件可以是______________(只需寫出一個)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】昆明某家電專賣店銷售每臺進價分別200元、160元的A,B兩種型號的電風扇,下表是近兩周的銷售情況

(注:進價、售價均保持不變,利銷=銷售收入進貨成本)

1)求A,B兩種型號的電風扇的銷售單價;

2)若專賣店準備用不多于3560元的金額再采購這兩種型號的電風扇共20臺,且采購A型電風扇的數(shù)量不少于8臺.求專賣店有哪幾種采購方案?

3)在(2)的條件下.如果采購的電風扇都能銷售完,請直接寫出哪種采購方案專賣店所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,在直線MN上求作一點P,使點P到射線OAOB的距離相等.(要求用尺規(guī)作圖,保留作圖痕跡,不必寫作法和證明過程)

2)等腰三角形的兩邊長滿足|a4|(b9)20.求這個等腰三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動點E、F分別從點B、D同時出發(fā),以1cm/s的速度向點A、C運動,連接AF、CE,取AF、CE的中點G、H,連接GE、FH.設運動的時間為ts(0<t<4).

(1)求證:AF∥CE;

(2)當t為何值時,四邊形EHFG為菱形;

(3)試探究:是否存在某個時刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:A(0,1),B(2,0),C(4,3)

(1)在直角坐標系中描出各點,畫出△ABC

(2)求△ABC的面積;

(3)設點P在坐標軸上,且△ABP與△ABC的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1∥l2,直線l3和直線l1,l2交于點C和D,直線l3上有一點P。

(1)如圖1,若P點在C,D之間運動時,問∠PAC,∠APB,∠PBD之間的關系是否發(fā)生變化,并說明理由;

(2)若點P在C,D兩點的外側(cè)運動時(P點與點C,D不重合,如圖2和3),試寫出∠PAC,∠APB,∠PBD之間的關系,并說明理由。(圖3只寫結(jié)論,不寫理由)

查看答案和解析>>

同步練習冊答案