【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有0、102030的字樣.規(guī)定:顧客在本商場同一日內,每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.

1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

【答案】解:(110,50;

2)解法一(樹狀圖):

從上圖可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,

因此P(不低于30元)=

解法二(列表法):

(以下過程同解法一

【解析】

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD60°,ACBD交于點O,ECD延長線上的一點,且CDDE,連接BE分別交AC、AD于點F、G,連接OG,則下列結論中一定成立的是( )

OGAB;②與△EGD全等的三角形共有5個;③S四邊形ODGFSABF;④由點A、B、DE構成的四邊形是菱形.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角梯形ABCD中,ADBC,DAB=90°,AD=1,BC=2.連接BD,把△ABD繞著點B逆時針旋轉90°得到△EBF,若點F剛好落在DA的延長線上,則∠C=________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC 中,AB=AC,BAC 的角平分線與∠ABC 的角平分線交于點 D,若∠ADB=130°,∠C=

A.50°B.65°C.80°D.100°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,小明和小龍做轉陀螺游戲,他們同時分別轉動一個陀螺,當兩個陀螺都停下來時,與桌面相接觸的邊上的數(shù)字都是奇數(shù)的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某開發(fā)區(qū)有一塊四邊形的空地ABCD,如圖所示,現(xiàn)計劃在空地上種植草皮,經測量∠A=90°,AB=3m,BC=12m,CD=13mDA=4m,若每平方米草皮需要200元,問要多少投入?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題情境)

課外興趣小組活動時,老師提出了如下問題:如圖1ABC中,若AB12,AC8,求BC邊上的中線AD的取值范圍.

小明在組內經過合作交流,得到了如下的解決方法:延長ADE,使DEAD,連接BE.請根據(jù)小明的方法思考:

1)由已知和作圖能得到ADC≌△EDB,依據(jù)是   

ASSS BSAS CAAS DHL

2)由三角形的三邊關系可求得AD的取值范圍是   

解后反思:題目中出現(xiàn)中點”“中線等條件,可考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論集合到同一個三角形中.

(初步運用)

如圖2,ADABC的中線,BEACE,交ADF,且AEEF.若EF3,EC2,求線段BF的長.

(靈活運用)

如圖3,在ABC中,∠A90°,DBC中點,DEDF,DEAB于點EDFAC于點F,連接EF,試猜想線段BECF、EF三者之間的等量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD平分∠BAC,DEAB于點EAE=8cmFAE的中點,GA點向C點以每秒1個單位的速度運動,則點G經過_______秒時DG=DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖所示,線段,點是線段上一點,分別是線段的中點,小明據(jù)此很輕松地求得;你知道小明是怎樣求出來的嗎?請寫出求解過程.

2)小明反思過程中突發(fā)奇想:若點的延長線上時,原有的結論“”是否仍然成立?請幫小明畫出圖形并說明理由.

查看答案和解析>>

同步練習冊答案