【題目】如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)120得到 EDC,連接AD,BD.
則下列結(jié)論:
①AC=AD;
②BD AC;
③四邊形ACED是菱形.
其中正確的個數(shù)是( )
A.O
B.1
C.2
D.3
【答案】D
【解析】解 ;∵等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,
∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,
∴∠ACD=120°-60°=60°.
∴△ACD是等邊三角形.
∴AC=AD,AC=AD=DE=CE. 故①符合題意;
∴四邊形ACED是菱形,故③符合題意;
∵等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,AC=AD,
∴AB=BC=CD=AD.
∴四邊形ABCD是菱形,
∴BD⊥AC,故②符合題意
故應選 :D.
根據(jù)旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前后的對應邊和對應角相等,結(jié)合等邊三角形的判定,即可得到△ACD是等邊三角形,從而判斷①的正誤;
然后依據(jù)菱形的判定定理,四條邊均相等的四邊形為菱形,即可判斷③的正誤.再根據(jù)菱形的性質(zhì)對角線互相垂直即可判斷出②正確。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,沿矩形ABCD的對角線折疊,先折出折痕AC,再折疊AB,使AB落在對角線AC上,折痕AE,若AD=8,AB=6.則BE= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組在全校范圍內(nèi)隨機抽取了50名同學進行“我最喜愛的盧龍?zhí)禺a(chǎn)”調(diào)查活動.
調(diào)查問卷
在下面四種盧龍?zhí)禺a(chǎn)中,你最喜愛的是( )(單選)
A.段家溝李子 B.石門核桃
C.鮑子溝葡萄 D.火爐烤白薯
將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖:
請根據(jù)所給信息解答以下問題:
(1)請補全條形統(tǒng)計圖;
(2)若全校有2000名同學,請估計全校同學中最喜愛“段家溝李子”的同學有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中A點的坐標為(8,y),AB⊥x軸于點B,sin∠OAB=,反比例函數(shù)y=的圖象的一支經(jīng)過AO的中點C,且與AB交于點D.
(1)求反比例函數(shù)解析式
(2)若函數(shù)y=3x與y=的圖象的另一支交于點M,求三角形OMB與四邊形OCDB的面積的比
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結(jié)BC.若△ABC的面積為2.
(1)求k的值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A,B兩地相距50千米,某日下午甲、乙兩人分別騎自行車和騎摩托車從A地出發(fā)駛往B地如圖所示,圖中的折線PQR和線段MN分別表示甲、乙兩人所行駛的路程S(千米)與該日下午時間t(時)之間的關系.請根據(jù)圖象解答下列問題:
(1)直接寫出:甲騎自行車出發(fā) 小時后,乙騎摩托車才開始出發(fā);乙騎摩托車比甲騎自行車提前 小時先到達B地;
(2)求出乙騎摩托車的行駛速度;甲騎自行車在下午2時至5時的行駛速度;
(3)當甲、乙兩人途中相遇時,直接寫出相遇地與A地的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個連接在一起的菱形的邊長都是1cm,一只電子甲蟲從點A開始按ABCDAEFGAB…的順序沿菱形的邊循環(huán)爬行,當電子甲蟲爬行2014cm時停下,則它停的位置是( )
A. 點F B. 點E C. 點A D. 點C
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價.
(2)求該校購買20個A品牌的足球和2個B品牌的足球的總費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對任意一個三位數(shù)n,如果n滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k= ,當F(s)+F(t)=18時,求k的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com