【題目】李先生參加了某電腦公司推出的分期付款購買電腦活動,他購買的電腦價格為1.2萬元,交了首付4000元之后每期付款y元,x個月結清余款.

(1)寫出yx的函數(shù)關系式.

(2)如打算每月付款不超過500元,李先生至少幾個月才能結清余款?

【答案】(1);(2)16個月

【解析】(1)設y=,從反比例圖象可知k=4000×2=8000,即可求出解析式.

(2)知道了自變量的范圍,利用解析式即可求出函數(shù)的范圍.

(1)由圖象可知yx成反比例,設yx的函數(shù)關系式為y=,

A(2,4000)代入關系式得4000=,

∴k=8000,

∴y=,

(2)當y=500時,500=,

∴x=16,

∴李先生至少16個月才能結清余款.

故答案為:(1);(2)16個月

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知點A(a,0),B(0,b),且a、b滿足=0, □ABCD的邊ADy軸交于點E(0,2),且EAD中點,雙曲線經(jīng)過C、D兩點.

(1)求k的值;

(2)點P在雙曲線上,點Qy軸上,若以點A、B、P、Q為頂點的四邊形是平行四邊形,試求滿足要求的所有點P、Q的坐標;

(3)以線段AB為對角線作正方形AFBH(如圖3),點T是邊AF上一動點,MHT的中點,MNHT,交ABN,當TAF上運動時,的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請求出其值,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解全校2400名學生的閱讀興趣,從中隨機抽查了部分同學,就“我最感興趣的書籍”進行了調(diào)查:A.小說、B.散文、C.科普、D.其他(每個同學只能選擇一項),進行了相關統(tǒng)計,整理并繪制出兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題

(1)本次抽查中,樣本容量為______

(2)a______,b______

(3)扇形統(tǒng)計圖中,其他類書籍所在扇形的圓心角是______°;

(4)請根據(jù)樣本數(shù)據(jù),估計全校有多少名學生對散文感興趣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張家界市為了治理城市污水,需要鋪設一段全長為300米的污水排放管道,鋪設120米后,為了盡可能減少施工對城市交通所造成的影響,后來每天的工作量比原計劃增加20%,結果共用了27天完成了這一任務,求原計劃每天鋪設管道多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個點從數(shù)軸上的原點開始先向右移動3個單位長度,再向左移動5個單位長度,可以看到終點表示的數(shù)是-2.已知點A,B是數(shù)軸上的點請參照圖并思考,完成下列各題

1 若點A表示數(shù),A點向右移動5個單位長度那么終點B表示的數(shù)是 ,此時 A,B兩點間的距離是________

2若點A表示數(shù)3,A點向左移動6個單位長度,再向右移動5個單位長度后到達點BB表示的數(shù)是________;此時 AB兩點間的距離是________

3A點表示的數(shù)為m,A點向右移動n個單位長度,再向左移動t個單位長度后到達終點B,此時A、B兩點間的距離為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖像交于A(2,4),B(-4,n)兩點,交x軸于點C.

(1)m、n的值;

(2)請直接寫出不等式kx+b<的解集;

(3)x軸下方的圖像沿x軸翻折,點B落在點B′處,連接AB′、B′C,求△A B′C的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD ,AB=4,BC=8,點ECD中點,P、QBC邊上兩個動點,且PQ=2,當四邊形APQE周長最小時,BP的長為(

A. 1 B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B都在數(shù)軸上,O為原點.

(1)B表示的數(shù)是_________________;

(2)若點B以每秒2個單位長度的速度沿數(shù)軸向右運動,則2秒后點B表示的數(shù)是________;

(3)若點A、B分別以每秒1個單位長度、3個單位長度的速度沿數(shù)軸向右運動,而點O不動,t秒后,A、B、O三個點中有一個點是另外兩個點為端點的線段的中點,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點O為直線AB上一點,將一直角三角板的直角頂點放在點O處.

(1)如圖1,將三角板的一邊ON與射線OB重合,過點O在三角板的內(nèi)部,作射線OC,使∠NOC:∠MOC=2:1,求∠AOC的度數(shù);

(2)如圖2,將三角板繞點O逆時針旋轉一定角度到圖2的位置,過點O在三角板MON的內(nèi)部作射線OC,使得OC恰好是∠MOB對的角平分線,此時∠AOM∠NOC滿足怎樣的數(shù)量關系?并說明理由.

查看答案和解析>>

同步練習冊答案