【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.其中記載了一個折竹抵地問題:今有竹高二丈,末折抵地,去本六尺,問折者高幾何?

譯文:有一根竹子,原高二丈(1丈=10尺),現(xiàn)被風(fēng)折斷,竹梢觸地面處與竹根的距離為6尺,問折斷處離地面的高度為多少尺?

如圖,我們用點(diǎn)AB,C分別表示竹梢,竹根和折斷處,設(shè)折斷處離地面的高度BCx尺,則可列方程為_____

【答案】x2+62=(20x2

【解析】

竹子折斷后剛好構(gòu)成一直角三角形,設(shè)竹子折斷處離地面x尺,則斜邊為(20x)尺,利用勾股定理解題即可.

設(shè)竹子折斷處離地面x尺,則斜邊為(20x)尺,根據(jù)勾股定理得:x2+62=20x2

故答案為:x2+62=20x2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【發(fā)現(xiàn)證明】如圖1,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.

小聰把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
(1)【類比引申】如圖2,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊CB,CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF,BE,DF之間的數(shù)量關(guān)系,并證明;

(2)【聯(lián)想拓展】如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們約定:如果身高在選定標(biāo)準(zhǔn)的±2%范圍之內(nèi)都稱為普通身高.為了了解某校九年級男生中具有普遍身高的人數(shù),我們從該校九年級男生中隨機(jī)抽出10名男生,分別測量出他們的身高(單位:cm),收集并整理如下統(tǒng)計表:

1)計算這組數(shù)據(jù)的三個統(tǒng)計量:平均數(shù)、中位數(shù)、眾數(shù);

2)請你選擇其中一個統(tǒng)計量作為選定標(biāo)準(zhǔn),找出這10名男生中具有普遍身高是哪幾位男生?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD

1)如圖1,∠A、∠E、∠C的數(shù)量關(guān)系為 

2)如圖2,若∠A50°,∠F115°,求∠C﹣∠E的度數(shù);

3)如圖3,∠E90°,AGFG分別平分∠BAE,∠CFE,若GDFC,試探究∠AGF與∠GDC的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)邊上的中點(diǎn),、分別垂直、于點(diǎn).求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)O0,0),A(﹣12),B21).

1)在圖中畫出AOB關(guān)于y軸對稱的A1OB1,并直接寫出點(diǎn)A1和點(diǎn)B1的坐標(biāo);(不寫畫法,保留畫圖痕跡)

2)在x軸上存在點(diǎn)P,使得PA+PB的值最小,則點(diǎn)P的坐標(biāo)為   ,PA+PB的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是兩位同學(xué)的一段對話:

聰聰:周末我們?nèi)也┪镳^參觀偉大的變革﹣﹣慶祝改革開放40周年大型展覽吧.

明明:好啊,我家離國家博物館約30km,我坐地鐵先走,地鐵的平均行駛速度是公交車的1.5倍呢.

聰聰:嗯,我周末住奶奶家,離國家博物館只有5km,坐公交車,你出發(fā)40分鐘后我再出發(fā)就能和你同時到達(dá).

根據(jù)對話內(nèi)容,請你求出公交車和地鐵的平均行駛速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知1=2,要得到ABD≌△ACE,從下列條件中補(bǔ)選一個,則錯誤的是( )

A.AB=AC B.DB=EC C.ADB=AEC D.B=C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(A類)已知如圖,四邊形ABCD中,AB=BC,AD=CD,求證:∠A=C.

(B類)已知如圖,四邊形ABCD中,AB=BC,A=C,求證:AD=CD.

查看答案和解析>>

同步練習(xí)冊答案