【題目】拋物線y=﹣x2平移后的位置如圖所示,點(diǎn)A,B坐標(biāo)分別為(﹣1,0)、(3,0),設(shè)平移后的拋物線與y軸交于點(diǎn)C,其頂點(diǎn)為D.
(1)求平移后的拋物線的解析式和點(diǎn)D的坐標(biāo);
(2)∠ACB和∠ABD是否相等?請(qǐng)證明你的結(jié)論;
(3)點(diǎn)P在平移后的拋物線的對(duì)稱軸上,且△CDP與△ABC相似,求點(diǎn)P的坐標(biāo).
【答案】
(1)
解:∵將拋物線y=﹣x2平移,平移后的拋物線與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),
∴平移后的拋物線的表達(dá)式為y=﹣(x+1)(x﹣3)=﹣x2+2x+3,即y=﹣x2+2x+3,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴頂點(diǎn)D的坐標(biāo)為(1,4);
(2)
解:∠ACB與∠ABD相等,理由如下:
如圖,
∵y=﹣x2+2x+3,
∴點(diǎn)x=0時(shí),y=3,即C點(diǎn)坐標(biāo)為(0,3),
又∵B(3,0),∠BOC=90°,
∴OB=OC,∠OBC=∠OCB=45°.
在△BCD中,∵BC2=32+32=18,CD2=12+12=2,BD2=22+42=20,
∴BC2+CD2=BD2,
∴∠BCD=90°,
∴tan∠CBD= ,
∵在△AOC中,∠AOC=90°,
∴tan∠ACO= = ,
∴tan∠ACO=tan∠CBD,
∴∠ACO=∠CBD,
∴∠ACO+∠OCB=∠CBD+∠OBC,
即∠ACB=∠ABD;
(3)
解:
∵點(diǎn)P在平移后的拋物線的對(duì)稱軸上,而y=﹣x2+2x+3的對(duì)稱軸為x=1,
∴可設(shè)P點(diǎn)的坐標(biāo)為(1,n).
∵△ABC是銳角三角形,
∴當(dāng)△CDP與△ABC相似時(shí),△CDP也是銳角三角形,
∴n<4,即點(diǎn)P只能在點(diǎn)D的下方,
又∵∠CDP=∠ABC=45°,
∴D與B是對(duì)應(yīng)點(diǎn),分兩種情況:
① 如果△CDP∽△ABC,那么 ,
即 ,
解得n= ,
∴P點(diǎn)的坐標(biāo)為(1, );
② 如果△CDP∽△CBA,那么 ,
即 ,
解得n= ,
∴P點(diǎn)的坐標(biāo)為(1, ).
綜上可知P點(diǎn)的坐標(biāo)為(1, )或(1, ).
【解析】(1)根據(jù)平移不改變二次項(xiàng)系數(shù)a的值,且平移后的拋物線與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),可知平移后拋物線的表達(dá)式為y=﹣(x+1)(x﹣3)=﹣x2+2x+3,再運(yùn)用配方法化為頂點(diǎn)式,即可求出頂點(diǎn)D的坐標(biāo);(2)先由B、C兩點(diǎn)的坐標(biāo),得出∠OBC=∠OCB=45°,再根據(jù)勾股定理的逆定理判斷△BCD是直角三角形,且∠BCD=90°,則由正切函數(shù)的定義求出tan∠CBD= ,在△AOC中,由正切函數(shù)的定義也求出tan∠ACO= ,得出∠ACO=∠CBD,則∠ACO+∠OCB=∠CBD+∠OBC,即∠ACB=∠ABD;(3)設(shè)P點(diǎn)的坐標(biāo)為(1,n),先由相似三角形的形狀相同,得出△CDP是銳角三角形,則n<4,再根據(jù)∠CDP=∠ABC=45°,得到D與B是對(duì)應(yīng)點(diǎn),所以分兩種情況進(jìn)行討論:①△CDP∽△ABC;
②△CDP∽△CBA.根據(jù)相似三角形對(duì)應(yīng)邊的比相等列出關(guān)于n的方程,解方程即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同時(shí)擲兩個(gè)質(zhì)地均勻的骰子,觀察向上一面的點(diǎn)數(shù),兩個(gè)骰子的點(diǎn)數(shù)相同的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知邊長(zhǎng)為4的正方形ABCD,P是BC邊上一動(dòng)點(diǎn)(與B、C不重合),連結(jié)AP,作PE⊥AP交∠BCD的外角平分線于E.設(shè)BP=x,△PCE面積為y,則y與x的函數(shù)關(guān)系式是( 。
A.y=2x+1
B.y= x﹣2x2
C.y=2x﹣ x2
D.y=2x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的邊AC在x軸上,邊BC⊥x軸,雙曲線y= 與邊BC交于點(diǎn)D(4,m),與邊AB交于點(diǎn)E(2,n).
(1)求n關(guān)于m的函數(shù)關(guān)系式;
(2)若BD=2,tan∠BAC= ,求k的值和點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市新城區(qū)環(huán)形路的拓寬改造工程項(xiàng)目,經(jīng)投標(biāo)決定由甲、乙兩個(gè)工程隊(duì)共同完成這一工程項(xiàng)目.已知乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的2倍;該工程如果由甲隊(duì)先做6天,剩下的工程再由甲、乙兩隊(duì)合作16天可以完成.求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的周長(zhǎng)為12cm,BC的垂直平分線EF經(jīng)過點(diǎn)A,則對(duì)角線BD的長(zhǎng)是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)區(qū)“美麗廣西 清潔鄉(xiāng)村”的號(hào)召,某校開展“美麗廣西 清潔校園”的活動(dòng),該校經(jīng)過精心設(shè)計(jì),計(jì)算出需要綠化的面積為498m2 , 綠化150m2后,為了更快的完成該項(xiàng)綠化工作,將每天的工作量提高為原來的1.2倍.結(jié)果一共用20天完成了該項(xiàng)綠化工作.
(1)該項(xiàng)綠化工作原計(jì)劃每天完成多少m2?,
(2)在綠化工作中有一塊面積為170m2的矩形場(chǎng)地,矩形的長(zhǎng)比寬的2倍少3m,請(qǐng)問這塊矩形場(chǎng)地的長(zhǎng)和寬各是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,M是AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC方向勻速運(yùn)動(dòng)到終點(diǎn)C,動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速運(yùn)動(dòng)到終點(diǎn)B.已知P,Q兩點(diǎn)同時(shí)出發(fā),并同時(shí)到達(dá)終點(diǎn),連接MP,MQ,PQ.在整個(gè)運(yùn)動(dòng)過程中,△MPQ的面積大小變化情況是( )
A.一直增大
B.一直減小
C.先減小后增大
D.先增大后減少
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,以AC為邊在△ABC外作等邊三角形ACD,過點(diǎn)D作AC的垂線,垂足為F,與AB相交于點(diǎn)E,連接CE.
(1)說明:AE=CE=BE;
(2)若AB=15cm,P是直線DE上的一點(diǎn).則當(dāng)P在何處時(shí),PB+PC最小,并求出此時(shí)PB+PC的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com