如圖,已知BC∥EF,且BC=EF,AF=CD,則AB=DE,說明理由.
解:∵BC∥EF (已知)
∴∠BCA=∠
EFD
EFD
 (
兩直線平行,內(nèi)錯角相等
兩直線平行,內(nèi)錯角相等

又∴AF=CD (已知)
∴AF+FC=CD+FC
AC
AC
=
FD
FD

在△ABC和△DEF中
BC=EF
∠BCA=∠EFD
∠BCA=∠EFD

AC=DF
AC=DF

∴△ABC≌△DEF(
SAS
SAS

∴AB=DE(
全等三角形的對應(yīng)邊相等
全等三角形的對應(yīng)邊相等
分析:根據(jù)平行線求出∠BCA=∠EFD,求出AC=FD,根據(jù)SAS推出△ABC≌△DEF,根據(jù)全等三角形性質(zhì)推出即可.
解答:解:∵BC∥EF,
∴∠BCA=∠EFD(兩直線平行,內(nèi)錯角相等),
∵AF=CD,
∴AF+FC=CD+FC,
∴AC=FD,
在△ABC和△DEF中,
BC=EF
∠BCA=∠EFD
AC=DF
,
∴△ABC≌△DEF(SAS),
∴AB=DE(全等三角形的對應(yīng)邊相等),
故答案為:EFD,兩直線平行,內(nèi)錯角相等,AC,F(xiàn)D,∠BCA=∠EFD,AC=DF,SAS,全等三角形的對應(yīng)邊相等.
點評:本題考查了平行線性質(zhì)和全等三角形的性質(zhì)和判定的應(yīng)用,注意:全等三角形的對應(yīng)邊相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知BC∥EF,BC=EF,AF=DC.則AB=DE.在相應(yīng)序號內(nèi)說明理由.
解:∵BC∥EF (已知)
∴∠BCA=∠EFD(
兩直線平行,內(nèi)錯角相等
兩直線平行,內(nèi)錯角相等

∵AF=DC(已知)
∴AF+FC=DC+FC
AC=DF
AC=DF

在△ABC和△DEF中
BC=EF(已知)
∠BCA=∠EFD   (已證)
AC=DF(已證)

∴△ABC≌△DEF(
SAS
SAS

∴AB=DE(
全等三角形的對應(yīng)邊相等
全等三角形的對應(yīng)邊相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建福安溪潭中學(xué)七年級下期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,已知BC∥EF,BC=EF,AF=DC.則AB=DE.在相應(yīng)序號內(nèi)說明理由.

解:∵BC∥EF (已知)
∴∠BCA=∠EFD(      ⑴        )
∵AF=DC(已知)
∴AF+FC=DC+FC
 、    
在△ABC和△DEF中
  BC=EF( 已知 。
     ∠BCA=∠EFD   (已證)
AC=DF(已證)
∴△ABC≌△DEF( 、恰   。
∴AB=DE(      ⑷         )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆福建福安溪潭中學(xué)七年級下期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知BC∥EF,BC=EF,AF=DC.則AB=DE.在相應(yīng)序號內(nèi)說明理由.

  解:∵BC∥EF (已知)

       ∴∠BCA=∠EFD(       ⑴        )

       ∵AF=DC(已知)

       ∴AF+FC=DC+FC

          即   ⑵    

        在△ABC和△DEF中

 。拢=EF( 已知  )

     ∠BCA=∠EFD   (已證)

            AC=DF(已證)

      ∴△ABC≌△DEF( 、恰   。

       ∴AB=DE(       ⑷         )

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,已知BC∥EF,BC=EF,AF=DC.則AB=DE.在相應(yīng)序號內(nèi)說明理由.
解:∵BC∥EF (已知)
∴∠BCA=∠EFD(________)
∵AF=DC(已知)
∴AF+FC=DC+FC
即________
在△ABC和△DEF中
數(shù)學(xué)公式
∴△ABC≌△DEF(________)
∴AB=DE(________)

查看答案和解析>>

同步練習(xí)冊答案