【題目】在如圖的方格中,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC的頂點(diǎn)均在格點(diǎn)上.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(﹣1,2).
(1)把△ABC向下平移8個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫出△A1B1C1;
(2)畫出與△A1B1C1關(guān)于y軸對(duì)稱的△A2B2C2;
(3)若點(diǎn)P(a,b)是△ABC邊上任意一點(diǎn),P2是△A2B2C2邊上與P對(duì)應(yīng)的點(diǎn),寫出P2的坐標(biāo)為 ;
(4)試在y軸上找一點(diǎn)Q(在圖中標(biāo)出來(lái)),使得點(diǎn)Q到B2、C2兩點(diǎn)的距離之和最小,并求出QB2+QC2的最小值.
【答案】(1)作圖見(jiàn)解析;(2)作圖見(jiàn)解析;(3)(-a,b-8);(4).
【解析】試題分析:(1)分別將點(diǎn)A、B、C向下平移8個(gè)單位,然后順次連接;
(2)分別作出點(diǎn)A1、B1、C1關(guān)于y軸對(duì)稱的點(diǎn),然后順次連接;
(3)根據(jù)所作圖形寫出P2的坐標(biāo);
(4)作出點(diǎn)B2關(guān)于y軸的對(duì)稱點(diǎn)B1,連接B1C2,與y軸的交點(diǎn)即為點(diǎn)Q,然后求出最小值.
解:(1)所作圖形如圖所示:
(2)所作圖形如圖所示:
(3)P2的坐標(biāo)為(﹣a,b﹣8);
(4)點(diǎn)Q如圖所示:
QB2+QC2==3.
故答案為:(﹣a,b﹣8);3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在梯形中,,,的平分線交于點(diǎn),連接.
求證:四邊形是菱形;
若,,試判斷的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形 ABCD 中,兩條鄰邊長(zhǎng)分別為3和5,∠BAD與∠ABC的平分線交于點(diǎn)E,點(diǎn)F 是CD的中點(diǎn),連接EF,則EF=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以邊和為邊作等邊和,連接,,
判斷與的數(shù)量關(guān)系,并求與的夾角的度數(shù);
繼續(xù)探索,如圖,以的和為邊作正方形和,連接、,判斷和的數(shù)量關(guān)系,并求出此時(shí)與的夾角;
如圖中、分別是、的中點(diǎn),、分別是正方形的中心,順次連接,判斷四邊形的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過(guò)點(diǎn)A,點(diǎn)A在第四象限,過(guò)點(diǎn)A作AH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.
(1)求正比例函數(shù)的表達(dá)式;
(2)在x軸上能否找到一點(diǎn)M,使△AOM是等腰三角形?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年,在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況.(售價(jià)不低于進(jìn)價(jià)).請(qǐng)根據(jù)小麗提供的信息,解答小華和小明提出的問(wèn)題.
認(rèn)真閱讀上面三位同學(xué)的對(duì)話,請(qǐng)根據(jù)小麗提供的信息.
(1)解答小華的問(wèn)題;
(2)解答小明的問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸相交于點(diǎn)、,與軸相交于點(diǎn).
求該函數(shù)的表達(dá)式;
點(diǎn)為該函數(shù)在第一象限內(nèi)的圖象上一點(diǎn),過(guò)點(diǎn)作,垂足為點(diǎn),連接.
①求線段的最大值;
②若以點(diǎn)、、為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】基本圖形:在Rt△中,,為邊上一點(diǎn)(不與點(diǎn),重合),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到.
探索:(1)連接,如圖①,試探索線段之間滿足的等量關(guān)系,并證明結(jié)論;
(2)連接,如圖②,試探索線段之間滿足的等量關(guān)系,并證明結(jié)論;
聯(lián)想:(3)如圖③,在四邊形中,.若,,則的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com