【題目】合肥百貨大廈某店賣一種狗寶寶布娃娃紀念品,已知成批購進時單價為4元,根據(jù)市場調(diào)查,銷售量與銷售單價在一段時間內(nèi)滿足如下關系:單價為10元時銷售量為300枚,而單價每降低1元,就可多售出5枚,那么求可獲得最大利潤為__元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,過B點作BM⊥AC于點E,交CD于點M,過D點作DN⊥AC于點F,交AB于點N.
(1)求證:四邊形BMDN是平行四邊形;
(2)已知AF=12,EM=5,求AN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,C的坐標分別為(a,0),(0,b),點B在第一象限內(nèi),且a,b滿足|a3﹣64|+=0.點P從原點出發(fā),以每秒2個單位長度的速度沿著長方形OABC的邊逆時針移動一周(即:沿著O→A→B→C→O的路線移動).
(1)求點B的坐標;
(2)當點P移動4秒時,求出點P的坐標;
(3)在移動過程中,當點P到x軸的距離為5個單位長度時,請直接寫出點P移動的時間t.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)己知2a-1的平方根是土3,3a+b-1的平方根是土4,c是的整數(shù)部分,求a+2b+c的算術平方根.
(2)已知在△ABC中,AB=10,BC=21,AC=17,則△ABC面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點,∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】最近霧霾天氣頻繁,使得空氣凈化器得以暢銷.某商場代理銷售某種空氣凈化器,其進價是500元/臺,經(jīng)過市場銷售后發(fā)現(xiàn),當售價是1000元/臺時,每月可售出50臺,且售價每降低20元,每月就可多售出5臺.若供貨商規(guī)定這種空氣凈化器售價不能低于600元/臺,代理銷售商每月要完成不低于60臺的銷售任務.
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關系式,并求出自變量x的取值范圍.
(2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).
(1)畫出與△ABC 關于 y 軸對稱的圖形△A1B1C1;
(2)寫出△A1B1C1 各頂點坐標;
(3)求△ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】教材在探索平方差公式時利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導或驗證公式,俗稱“無字證明”,例如,著名的趙爽弦圖(如圖①,其中四個直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為c2 , 也可以表示為4×ab+(a-b)2由此推導出重要的勾股定理:如果直角三角形兩條直角邊長為a,b,斜邊長為c,則a2+b2=c2 .
(1)圖②為美國第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請你利用圖②推導勾股定理.
(2)如圖③,直角△ABC中,∠ACB=90°,AC=3cm,BC=4cm,則斜邊AB上的高CD的長為多少?
(3)試構造一個圖形,使它的面積能夠解釋(a+b)(a+2b)=a2+3ab+2b2 , 畫在如圖4的網(wǎng)格中,并標出字母a、b所表示的線段.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com