【題目】等腰△ABC 中,AB=AC,∠BAC=120°,點(diǎn) P 為平面內(nèi)一點(diǎn).
(1)如圖 1,當(dāng)點(diǎn) P 在邊 BC 上時(shí),且滿足∠APC=120°,求的值;
(2)如圖 2,當(dāng)點(diǎn) P 在△ABC 的外部,且滿足∠APC+∠BPC=90°,求證:BP=AP;
(3)如圖 3,點(diǎn) P 滿足∠APC=60°,連接 BP,若 AP=1,PC=3,直接寫出BP 的長(zhǎng)度.
【答案】(1)2;(2)見(jiàn)解析;(3) 2或.
【解析】
(1)由∠BAC=120°,AB=AC,推出∠B=∠C=30°,由∠APC=120°,推出∠PAC=∠C=30°,推出PC=PA,∠PAB=90°,推出PB=2PA,可得 PB=2PC解決問(wèn)題;
如圖 2中,將線段AP繞點(diǎn) A順時(shí)針旋轉(zhuǎn)120°得到線段AF,連接PF, BF,BF交 PC于點(diǎn) H.想辦法證明PB=PF即可解決問(wèn)題;
(3)分兩種情形分別求解即可解決問(wèn)題.
(1)如圖1中,∵∠BAC=120°,AB=AC,
∴∠B=∠C=30°,
∵∠APC=120°,
∴∠PAC=∠C=30°,
∴PC=PA,∠PAB=90°,
∴PB=2PA,
∴PB=2PC,
∴=2;
(2)如圖2中,將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°得到線段AF,連接PF,BF,BF交PC于點(diǎn)H,
∵∠BAC=∠PAF=120°,
∴∠PAC=∠BAF,
∵AB=AC,AF=AP,
∴△ABF≌△ACP(SAS),
∠APC=∠AFB,
設(shè)∠APC=α,則∠AFB=α,∠PFB=30°+α,∠BPC=90°﹣α
∵∠PHB=∠HPF+∠PFH=(30°﹣α)+(30°+α)=60°,
∴∠PBH=180°﹣(90°﹣α﹣60°)=30°+α,
∴∠PBF=∠PFB,
∴PB=PF,
在△PAF中,易知PF=PA,
∴PB=PA;
(3)①如圖3﹣1中,當(dāng)點(diǎn)P在△ABC外部時(shí),將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn) 120°得到線段AF,連接PF,BF,
則△ABF≌△ACP(SAS),
∴∠AFB=∠APC=60°,BF=PC=3,
∵∠AFP=30°,
∴∠BFP=90°,
∵PA=AF=1,∠PAF=120°,
∴PF=,
∴PB==2;
②如圖3﹣2中,當(dāng)點(diǎn)P在△ABC內(nèi)部時(shí),將線段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120° 得到AH,連接PH,HC.作HM⊥PC于M,
則△BAP≌△CAH(SAS),
∴PB=CH,
∵∠PAH+∠APC=120°+60°=180°,
∴AH∥PC,
∴∠AHP=∠HPM=30°,
∴HM=PH=,
∴PM=HM=,
∵PC=3,
∴CM=PM=,
∵HM⊥PC,
∴HC=PH= ,
∴PB=,
綜上所述,滿足條件的 PB 的值為 2或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)在反比例函數(shù)圖象上,直線交于點(diǎn),交正半軸于點(diǎn),且
求的長(zhǎng):
若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店計(jì)劃購(gòu)進(jìn),兩種型號(hào)的電機(jī),其中每臺(tái)型電機(jī)的進(jìn)價(jià)比型多元,且用元購(gòu)進(jìn)型電機(jī)的數(shù)量與用元購(gòu)進(jìn)型電機(jī)的數(shù)量相等.
(1)求,兩種型號(hào)電機(jī)的進(jìn)價(jià);
(2)該商店打算用不超過(guò)元的資金購(gòu)進(jìn),兩種型號(hào)的電機(jī)共臺(tái),至少需要購(gòu)進(jìn)多少臺(tái)型電機(jī)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有兩個(gè)不透明的乒乓球盒,甲盒中裝有1個(gè)白球和2個(gè)紅球,乙盒中裝有2個(gè)白球和若干個(gè)紅球,這些小球除顏色不同外,其余均相同.若從乙盒中隨機(jī)摸出一個(gè)球,摸到紅球的概率為.
(1)求乙盒中紅球的個(gè)數(shù);
(2)若先從甲盒中隨機(jī)摸出一個(gè)球,再?gòu)囊液兄须S機(jī)摸出一個(gè)球,請(qǐng)用樹形圖或列表法求兩次摸到不同顏色的球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張師傅根據(jù)某幾何體零件,按1:1的比例畫出準(zhǔn)確的三視圖(都是長(zhǎng)方形)如圖,已知EF=4cm,F(xiàn)G=12cm,AD=10cm.
(1)說(shuō)出這個(gè)幾何體的名稱;
(2)求這個(gè)幾何體的表面積S;
(3)求這個(gè)幾何體的體積V.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道“距離地面越高,溫度越低”,下表給出了距離地面的高度與所在位置的溫度之間的大致關(guān)系.
距離地面的高度(千米) | 0 | 1 | 2 | 3 | 4 | 5 |
所在位置的溫度(C) | 20 | 14 | 8 | 2 |
(1)上表中哪個(gè)是自變量?
(2)由表可知,距離地面高度每上升1千米,溫度降低______℃;
(3)2018年5月14日,四川航空3U8633航班執(zhí)行重慶—拉薩航班任務(wù),飛行途中,在距離地面9800米的高空,駕駛艙右側(cè)擋風(fēng)玻璃突然破裂,2名飛行員在超低壓、超低溫的緊急情況下,冷靜應(yīng)對(duì),最終飛機(jī)成功降落,創(chuàng)造了世界航空史上的奇跡,請(qǐng)你計(jì)算出飛機(jī)發(fā)生事故時(shí)所在高空的溫度(假設(shè)當(dāng)時(shí)所在位置的地面溫度為20℃).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,P為CD邊上一點(diǎn)(DP<CP),∠APB=90°.將ΔADP沿AP翻折得到,PD′的延長(zhǎng)線交邊AB于點(diǎn)M,過(guò)點(diǎn)B作BN‖MP交DC于點(diǎn)N.
圖1
圖2
(1)求證:;
(2)請(qǐng)判斷四邊形PMBN的形狀,并說(shuō)明理由;
(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若tan∠PAD=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,□ABCD,BE//DF,且分別交對(duì)角線AC于點(diǎn)E,F(xiàn),連接ED,BF .
求證:(1)ΔABE≌ΔCDF;
(2)∠DEF=∠BFE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com