【題目】如圖,在Rt△ABC中,AB=AC.D,E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:
①△AED≌△AEF;
②△ABE∽△ACD;
③BE+DC=DE;
④BE2+DC2=DE2.
其中正確的是( )
A.②④ B.①④ C.②③ D.①③
【答案】B
【解析】
試題分析:由△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△AFB,可知△ADC≌△AFB,∠FAD=90°,由∠DAE=45°可判斷∠FAE=∠DAE,可證①△AED≌△AEF.由已知條件可證△BEF為直角三角形,則有④BE2+DC2=DE2是正確的.
解:∵△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△AFB,
∴△ADC≌△AFB,∠FAD=90°,
∴AD=AF,
∵∠DAE=45°,
∴∠FAE=90°﹣∠DAE=45°,
∴∠DAE=∠FAE,AE為△AED和△AEF的公共邊,
∴△AED≌△AEF
∴ED=FE
在Rt△ABC中,∠ABC+∠ACB=90°,
又∵∠ACB=∠ABF,
∴∠ABC+∠ABF=90°即∠FBE=90°,
∴在Rt△FBE中BE2+BF2=FE2,
∴BE+DC=DE③顯然是不成立的.
故正確的有①④,不正確的有③,②不一定正確.
故選B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a、b 互為相反數(shù),c、d 互為倒數(shù),則代數(shù)式(a+b)2 +cd-2的值為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,若直線y=kx+b經(jīng)過(guò)第一、三、四象限,則直線y=bx+k不經(jīng)過(guò)的象限是( 。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列語(yǔ)句中,是命題的是( )
A. 直線AB和CD垂直嗎 B. 過(guò)線段AB的中點(diǎn)C畫(huà)AB的垂線
C. 同旁內(nèi)角不互補(bǔ),兩直線不平行 D. 連接A,B兩點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( 。
A. 對(duì)角線互相垂直且相等的四邊形是正方形
B. 對(duì)角線互相平分的四邊形是菱形
C. 對(duì)角線互相垂直的四邊形是平行四邊形
D. 對(duì)角線相等的平行四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地一天的最高氣溫是8℃,最低氣溫是﹣2℃,則該地這天的溫差是( )
A. 10℃ B. ﹣10℃ C. 6℃ D. ﹣6℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店出售某種商品每件可獲利m元,利潤(rùn)率為20%,若這種商品的進(jìn)價(jià)提高25%,而商店將這種商品的售價(jià)提高到每件仍可獲利m元,則提價(jià)后的利潤(rùn)率為( )
A. 25% B. 20% C. 16% D. 12.5%
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第十七屆西洽會(huì)上,延安新區(qū)簽約4個(gè)項(xiàng)目,總投資額11 536 000 000元,則11 536 000 000用科學(xué)記數(shù)法可表示為( )
A. 115.36×108 B. 1.1536×109 C. 1.1536×1010 D. 11.56×109
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com