【題目】如圖1,矩形OABC頂點(diǎn)B的坐標(biāo)為(8,3),定點(diǎn)D的坐標(biāo)為(12,0),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長度的速度沿x軸的正方向勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒1個(gè)單位長度的速度沿x軸的負(fù)方向勻速運(yùn)動(dòng),PQ兩點(diǎn)同時(shí)運(yùn)動(dòng),相遇時(shí)停止.在運(yùn)動(dòng)過程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=時(shí),△PQR的邊QR經(jīng)過點(diǎn)B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過定點(diǎn)E(5,0)作EF⊥BC,垂足為F,當(dāng)△PQR的頂點(diǎn)R落在矩形OABC的內(nèi)部時(shí),過點(diǎn)R作x軸、y軸的平行線,分別交EF、BC于點(diǎn)M、N,若∠MAN=45°,求t的值.
【答案】
(1)1秒
(2)
解:①當(dāng)0≤t≤1時(shí),如答圖1﹣1所示.
設(shè)PR交BC于點(diǎn)G,
過點(diǎn)P作PH⊥BC于點(diǎn)H,則CH=OP=2t,GH=PH=3.
S=S矩形OABC﹣S梯形OPGC
=8×3﹣ (2t+2t+3)×3
= ﹣6t;
②當(dāng)1<t≤2時(shí),如答圖1﹣2所示.
設(shè)PR交BC于點(diǎn)G,RQ交BC、AB于點(diǎn)S、T.
過點(diǎn)P作PH⊥BC于點(diǎn)H,則CH=OP=2t,GH=PH=3.
QD=t,則AQ=AT=4﹣t,
∴BT=BS=AB﹣AQ=3﹣(4﹣t)=t﹣1.
S=S矩形OABC﹣S梯形OPGC﹣S△BST
=8×3﹣ (2t+2t+3)×3﹣ (t﹣1)2
=﹣ t2﹣5t+19;
③當(dāng)2<t≤4時(shí),如答圖1﹣3所示.
設(shè)RQ與AB交于點(diǎn)T,則AT=AQ=4﹣t.
PQ=12﹣3t,∴PR=RQ= (12﹣3t).
S=S△PQR﹣S△AQT
= PR2﹣ AQ2
= (12﹣3t)2﹣ (4﹣t)2
= t2﹣14t+28.
綜上所述,S關(guān)于t的函數(shù)關(guān)系式為:
S= .
(3)
解:∵E(5,0),∴AE=AB=3,
∴四邊形ABFE是正方形.
如答圖2,將△AME繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABM′,其中AE與AB重合.
∵∠MAN=45°,
∴∠EAM+∠NAB=45°,
∴∠BAM′+∠NAB=45°,
∴∠MAN=∠M′AN.
連接MN.在△MAN與△M′AN中,
∴△MAN≌△M′AN(SAS).
∴MN=M′N=M′B+BN
∴MN=EM+BN.
設(shè)EM=m,BN=n,則FM=3﹣m,F(xiàn)N=3﹣n.
在Rt△FMN中,由勾股定理得:FM2+FN2=MN2,即(3﹣m)2+(3﹣n)2=(m+n)2,
整理得:mn+3(m+n)﹣9=0.①
延長NR交x軸于點(diǎn)S,則m=EM=RS= PQ= (12﹣3t),
∵QS= PQ= (12﹣3t),AQ=4﹣t,
∴n=BN=AS=QS﹣AQ= (12﹣3t)﹣(4﹣t)=2﹣ t.
∴m=3n,
代入①式,化簡得:n2+4n﹣3=0,
解得n=﹣2+ 或n=﹣2﹣ (舍去)
∴2﹣ t=﹣2+
解得:t=8﹣2 .
∴若∠MAN=45°,則t的值為(8﹣2 )秒.
【解析】解:(1)△PQR的邊QR經(jīng)過點(diǎn)B時(shí),△ABQ構(gòu)成等腰直角三角形,
∴AB=AQ,即3=4﹣t,
∴t=1.
即當(dāng)t=1秒時(shí),△PQR的邊QR經(jīng)過點(diǎn)B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等腰直角三角形(等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°),還要掌握?qǐng)D形的旋轉(zhuǎn)(每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度,任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.旋轉(zhuǎn)的方向、角度、旋轉(zhuǎn)中心是它的三要素)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)半徑為r的圓形紙片在邊長為a( )的等邊三角形內(nèi)任意運(yùn)動(dòng),則在該等邊三角形內(nèi),這個(gè)圓形紙片“不能接觸到的部分”的面積是( )
A.
B.
C.
D.πr2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P在以AB為直徑的半圓內(nèi),連接AP、BP,并延長分別交半圓于點(diǎn)C、D,連接AD、BC并延長交于點(diǎn)F,作直線PF,下列說法一定正確的是( ) ①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.
A.①③
B.①④
C.②④
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組對(duì)線段上的動(dòng)點(diǎn)問題進(jìn)行探究,已知AB=8.
問題思考:
如圖1,點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn),分別以AP、BP為邊在同側(cè)作正方形APDC、BPEF.
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),這兩個(gè)正方形的面積之和是定值嗎?若是,請(qǐng)求出;若不是,請(qǐng)求出這兩個(gè)正方形面積之和的最小值.
(2)分別連接AD、DF、AF,AF交DP于點(diǎn)K,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),在△APK、△ADK、△DFK中,是否存在兩個(gè)面積始終相等的三角形?請(qǐng)說明理由.
問題拓展:
(3)如圖2,以AB為邊作正方形ABCD,動(dòng)點(diǎn)P、Q在正方形ABCD的邊上運(yùn)動(dòng),且PQ=8.若點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D的線路,向點(diǎn)D運(yùn)動(dòng),求點(diǎn)P從A到D的運(yùn)動(dòng)過程中,PQ的中點(diǎn)O所經(jīng)過的路徑的長.
(4)如圖3,在“問題思考”中,若點(diǎn)M、N是線段AB上的兩點(diǎn),且AM=BN=1,點(diǎn)G、H分別是邊CD、EF的中點(diǎn),請(qǐng)直接寫出點(diǎn)P從M到N的運(yùn)動(dòng)過程中,GH的中點(diǎn)O所經(jīng)過的路徑的長及OM+OB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了對(duì)一棵傾斜的古杉樹AB進(jìn)行保護(hù),需測量其長度.如圖,在地面上選取一點(diǎn)C,測得∠ACB=45°,AC=24m,∠BAC=66.5°,求這棵古杉樹AB的長度.(結(jié)果取整數(shù)) 參考數(shù)據(jù): ≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B兩個(gè)小集鎮(zhèn)在河流CD的同側(cè),分別到河的距離為AC=10千米,BD=30千米,且CD=30千米,現(xiàn)在要在河邊建一自來水廠,向A、B兩鎮(zhèn)供水,鋪設(shè)水管的費(fèi)用為每千米3萬,請(qǐng)你在河流CD上選擇水廠的位置M,使鋪設(shè)水管的費(fèi)用最節(jié)省,并求出總費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的箱子里共有3個(gè)球,把它們的分別編號(hào)為1,2,3,這些球除編號(hào)不同外其余都相同.
(1)從箱子中隨機(jī)摸出一個(gè)球,求摸出的球是編號(hào)為1的球的概率;
(2)從箱子中隨機(jī)摸出一個(gè)球,記錄下編號(hào)后將它放回箱子,攪勻后再摸出一個(gè)球并記錄下編號(hào),求兩次摸出的球都是編號(hào)為3的球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB的邊OB與x軸正半軸重合,點(diǎn)P是OA上的一動(dòng)點(diǎn),點(diǎn)N(6,0)是OB上的一定點(diǎn),點(diǎn)M是ON的中點(diǎn),∠AOB=30°,要使PM+PN最小,則點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C在同一直線上,在這條直線同側(cè)作等邊△ABD和等邊△BCE,連接AE和CD,交點(diǎn)為M,AE交BD于點(diǎn)P,CD交BE于點(diǎn)Q,連接PQ、BM, 有4個(gè)結(jié)論:①△ABE≌△DBC,②△DQB≌△ABP,③∠EAC=30°,④∠AMC=120°,請(qǐng)將所有正確結(jié)論的序號(hào)填在橫線上______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com