(如圖),已知D是AB上一點,E是AC上一點,∠B+∠BDE=180°,∠C=70°.則∠AED=________.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1)如圖1,已知△PAC是圓O的內接正三角形,那么∠OAC﹦
 
;
(2)如圖2,設AB是圓O的直徑,AC是圓的任意一條弦,∠OAC﹦α﹒
①如果α﹦45°,那么AC能否成為圓內接正多邊形的一條邊?若有可能,那么此多邊形是幾邊形?請說明理由﹒
②若AC是圓的內接正n邊形的一邊,則用含n的代數(shù)式表示α應為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知AB是⊙O的直徑,AB垂直于弦CD,垂足為M,弦AE與CD交于F,則有結論AD2=AE•AF成立(不要求證明).
(1)若將弦CD向下平移至與O相切B點時,如圖2,則AEAF是否等于AG2?如果不相等,請?zhí)角驛E•AF等于哪兩條線段的積并給出證明;
(2)當CD繼續(xù)向下平移至與O相離時,如圖3,在(1)中探求的結論是否還成立?并說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)解不等式
2x-1
3
5x+1
2
+1
,并把它的解集在數(shù)軸上(如圖1)表示出來.
(2)如圖2,已知AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C,點D為AP的中點.直線CD是⊙O的切線嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1,AB為圓O的直徑,弦CD⊥AB,垂足為點E,連接OC,若AB=10,CD=8,求AE的長.
(2)如圖2,已知AD是△ABC的角平分線,DE∥AC交AB于點E,DF∥AB交AC于點F.
求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1,在平行四邊形ABCD中,E、F為BC上兩點,且BE=CF,AF=DE.
求證:①△ABF≌△DCE;②四邊形ABCD是矩形.
(2)如圖2,已知△ABC是等邊三角形,D點是AC的中點,延長BC到E,使CE=CD.
①請用尺規(guī)作圖的方法,過點D作DM⊥BE,垂足為M;(不寫作法,保留作圖痕跡)
②求證:BM=EM.

查看答案和解析>>

同步練習冊答案