【題目】如圖,在矩形OABC中,OA=8,OC=4,沿對角線OB折疊后,點A與點D重合,OD與BC交于點E,則點D的坐標是( 。
A.(4,8)
B.(5,8)
C.(,)
D.(,)
【答案】C
【解析】解:∵矩形ABCO中,OA=8,OC=4,
∴BC=OA=8,AB=OC=4,
由折疊得到OD=OA=BC,∠AOB=∠DOB,∠ODB=∠BAO=90°,
在Rt△CBO和Rt△DOB中,
,
∴Rt△CBO≌Rt△DOB(HL),
∴∠CBO=∠DOB,
∴OE=EB,
設CE=x,則EB=OE=8﹣x,
在Rt△COE中,根據(jù)勾股定理得:(8﹣x)2=x2+42 ,
解得:x=3,
∴CE=3,OE=5,DE=3,
過D作DF⊥BC,可得△COE∽△FDE,
∴,即,
解得:DF=,EF=,
∴DF+OC=+4=,CF=3+=,
則D(,),
故選C.
由四邊形ABCD為矩形,利用矩形的性質(zhì)得到兩對邊相等,再利用折疊的性質(zhì)得到OA=OD,兩對角相等,利用HL得到直角三角形BOC與直角三角形BOD全等,利用全等三角形對應角相等及等角對等邊得到OE=EB,在直角三角形OCE中,設CE=x,表示出OE,利用勾股定理求出x的值,確定出CE與OE的長,進而由三角形COE與三角形DEF相似,求出DF與EF的長,即可確定出D坐標.
科目:初中數(shù)學 來源: 題型:
【題目】今年5月份,某校九年級學生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學的中考體育情況,對全班學生的中考體育成績進行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計圖(如圖),根據(jù)圖表中的信息解答下列問題:
分組 | 分數(shù)段(分) | 頻數(shù) |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
(1)求全班學生人數(shù)和m的值.
(2)直接學出該班學生的中考體育成績的中位數(shù)落在哪個分數(shù)段.
(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“全民閱讀”深入人心,好讀書,讀好書,讓人終身受益.為滿足同學們的讀書需求,學校圖書館準備到新華書店采購文學名著和動漫書兩類圖書.經(jīng)了解,20本文學名著和40本動漫書共需1520元,20本文學名著比20本動漫書多440元(注:所采購的文學名著價格都一樣,所采購的動漫書價格都一樣).
(1)求每本文學名著和動漫書各多少元?
(2)若學校要求購買動漫書比文學名著多20本,動漫書和文學名著總數(shù)不低于72本,總費用不超過2000元,請求出所有符合條件的購書方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB是⊙O的直徑,點C在圓上,∠AOC=80°,點P是線段AB延長線上的一動點,連接PC,則∠APC的度數(shù)是 度(寫出一個即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市居民用電的電價實行階梯收費,收費標準如下表:
一戶居民每月用電量x(單位:度) | 電費價格(單位:元/度) |
0<x≤200 | a |
200<x≤400 | b |
x>400 | 0.92 |
(1)已知李叔家四月份用電286度,繳納電費178.76元;五月份用電316度,繳納電費198.56元,請你根據(jù)以上數(shù)據(jù),求出表格中a,b的值.
(2)六月份是用電高峰期,李叔計劃六月份電費支出不超過300元,那么李叔家六月份最多可用電多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某次知識競賽有20道必答題,每一題答對得10分,答錯或不答都扣5分;3道搶答題,每一題搶答對得10分,搶答錯扣20分,搶答不到不得分也不扣分.甲乙兩隊決賽,甲隊必答題得了170分,乙隊必答題只答錯了1題.
(1)甲隊必答題答對答錯各多少題?
(2)搶答賽中,乙隊搶答對了第1題,又搶到了第2題,但還沒作答時,甲隊啦啦隊隊員小黃說:“我們甲隊輸了!”小汪說:“小黃的話不一定對!”請你舉一例說明“小黃的話”有何不對.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸上,函數(shù)y=的圖象過點P(4,3)和矩形的頂點B(m,n)(0<m<4).
(1)求k的值.
(2)連接PA,PB,若△ABP的面積為6,求直線BP的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了參加中考體育測試,甲、乙、丙三位同學進行足球傳球訓練,球從一個人腳下隨機傳到另一個人腳下,且每位傳球人傳給其余兩人的機會是均等的,由甲開始傳球,共傳球三次.
(1)請利用樹狀圖列舉出三次傳球的所有可能情況;
(2)求三次傳球后,球回到甲腳下的概率;
(3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com