11.已知拋物線y=x2-(2m+1)x+m2+m-2(m是常數(shù)).
(1)求證:無論m為何值,拋物線與x軸總有兩個交點;
(2)若拋物線與x軸兩交點分別為A(x1,0),B(x2,0)(x1>x2),且AB=1+$\frac{m+1}{m-1}$,求m的值.

分析 (1)先計算判別式的值,然后根據(jù)判別式的意義進(jìn)行證明;
(2)利用求根公式方程x2-(2m+1)x+m2+m-2=0得x1=m+2,x2=m-1,則AB=|x1-x2|=3,然后解方程1+$\frac{m+1}{m-1}$=3即可.

解答 (1)證明:∵△=(2m+1)2-4(m2+m-2)
=9>0,
∴無論m為何值,拋物線與x軸總有兩個交點;
(2)解方程x2-(2m+1)x+m2+m-2=0得x1=m+2,x2=m-1,
∵AB=|x1-x2|=3
∵AB=1+$\frac{m+1}{m-1}$,
∴1+$\frac{m+1}{m-1}$=3,解得m=4,
經(jīng)檢驗x=4是分式方程的解,
∴m的值為4.

點評 本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.△=b2-4ac決定拋物線與x軸的交點個數(shù)(△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.已知|x|=3,y2=4,且x+y<0,則x-y的值等于( 。
A.-5B.-1C.±5D.-5或-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.王濤從家走到汽車站,第一小時走了3km,他看了看表,估計按這個速度將遲到40min,因此,他以每小時4km的速度走剩余的路,結(jié)果反而提前了45min到達(dá),求王濤家到汽車站的距離,如果設(shè)王濤家到汽車站的距離為xkm,則可列方程為( 。
A.$\frac{x}{3}$+$\frac{2}{3}$=$\frac{x}{4}$-$\frac{3}{4}$B.$\frac{x}{3}$-$\frac{2}{3}$=$\frac{x}{4}$+$\frac{3}{4}$C.$\frac{x}{3}$+$\frac{2}{3}$=$\frac{x-3}{4}$-$\frac{7}{4}$D.$\frac{x}{3}$-$\frac{2}{3}$=$\frac{x-3}{4}$+$\frac{7}{4}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.如果水位升高7m時水位變化記作+7m,那么水位下降4m時水位變化記作( 。
A.-3mB.3mC.-4mD.10m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.已知關(guān)于x的分式方程$\frac{2x-m}{x+1}$=3的解是正數(shù),那么字母m的取值范圍是m<-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.下列四個命題是真命題的有( 。
①同位角相等;
②相等的角是對頂角;
③直角三角形兩個銳角互余;
④三個內(nèi)角相等的三角形是等邊三角形.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.有9名同學(xué)參加歌詠比賽,他們的預(yù)賽成績各不相同,現(xiàn)取其中前4名參加決賽,小紅同學(xué)在知道自己成績的情況下,要判斷自己能否進(jìn)入決賽,還需要知道這9名同學(xué)成績的(  )
A.中位數(shù)B.眾數(shù)C.平均數(shù)D.加權(quán)平均數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.從單詞“hello”中隨機(jī)抽取一個字母,抽中l(wèi)的概率為(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖,將長和寬分別是a,b的長方形紙片的四個角都剪去一個邊長為x的正方形.用含a,b,x的代數(shù)式表示紙片剩余部分的面積為ab-4x2

查看答案和解析>>

同步練習(xí)冊答案