如圖,已知△ABC中,AC=BC,以BC為直徑的⊙O交AB于E,過點(diǎn)E作EG⊥AC于G,交BC的延長線于點(diǎn)F。

(1)求證:AE=BE

(2)求證:FE是⊙O的切線

(3)若BC=6,F(xiàn)E=4,求FC和AG的長。

 

【答案】

(1)連接EC,根據(jù)BC為⊙OD 的直徑可得CE⊥AB,再由AC=BC根據(jù)等腰三角形三線合一的性質(zhì)即可證得結(jié)論;(2)連接OE,根據(jù)三角形的中位線定理可得OE∥AC,再結(jié)合EG⊥AC即可證得OE⊥EF,從而證得結(jié)論;(3)CF=2,

【解析】

試題分析:(1)連接EC,根據(jù)BC為⊙OD 的直徑可得CE⊥AB,再由AC=BC根據(jù)等腰三角形三線合一的性質(zhì)即可證得結(jié)論;

(2)連接OE,根據(jù)三角形的中位線定理可得OE∥AC,再結(jié)合EG⊥AC即可證得OE⊥EF,從而證得結(jié)論;

(3)由BC=2OE=6可得OE=3,再根據(jù)勾股定理可求得OF=5,即得CF=2,由OE∥AC可得△FCG∽△FEO,根據(jù)相似三角形的性質(zhì)可求得CG的長,從而求得結(jié)果.

(1)連接EC,

∵BC為⊙OD 的直徑,

∴CE⊥AB

又∵AC=BC,

∴AE=BE;

(2)連接OE,

∵點(diǎn)O、E分別是BC、AB的中點(diǎn),

∴OE∥AC,

∵EG⊥AC, 

∴OE⊥EF

∴FE是⊙O的切線;

(3)∵BC=2OE=6,

∴OE=3

∵FE=4,   

∴OF=5   

∴CF=2

∵OE∥AC,

∴△FCG∽△FEO 

 

又∵AC=BC=6,  

.

考點(diǎn):圓的綜合題

點(diǎn)評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,P是AB上一點(diǎn),連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點(diǎn),EF∥BC交AB于E,交AC于F(EF不過A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點(diǎn),則下列結(jié)論不正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案