【題目】如圖,∠B=90°,AB=3,BC=4,CD=12,AD=13.求四邊形ABCD的面積.

【答案】36.

【解析】試題分析:連接AC,在直角三角形ABC中,由ABBC的長,利用勾股定理求出AC的長,再由ADCD的長,利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.

試題解析:解:連接AC如圖所示:

∵∠B=90°,∴△ABC為直角三角形AB=3,BC=4,∴根據(jù)勾股定理得:AC==5.CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD為直角三角形,ACD=90°,則S四邊形ABCD=SABC+SACD=ABBC+ACCD=×3×4+×5×12=36.

故四邊形ABCD的面積是36.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】兒童節(jié)期間,某公園游戲場舉行一場活動.有一種游戲的規(guī)則是:在一個裝有8個紅球和若干白球(每個球除顏色外,其他都相同)的袋中,隨機摸一個球,摸到一個紅球就得到一個海寶玩具.已知參加這種游戲的兒童有40 000,公園游戲場發(fā)放海寶玩具8 000個.

(1)求參加此次活動得到海寶玩具的頻率?

(2)請你估計袋中白球的數(shù)量接近多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABC中,A90°,點DE分別在AB、AC上,DEBCCFDE的延長線垂直,垂足為F

1)求證:BECF ;

2)若B55°,求CED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中

1平移至的位置,使點對應,得到;

2)圖中可用字母表示,與線段平行且相等的線段有哪些?

3)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知長方形,為坐標原點,點坐標為,點在軸的正半軸上,點在軸的正半軸上,是線段上的動點,設,已知點在第一象限且是直線上一點,若是等腰直角三角形.

)求點的坐標并寫出解題過程.

)直角向下平移個單位后,在該直線上是否存在點,使是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了深化改革,某校積極開展校本課程建設,計劃成立“文學鑒賞”“科學實驗”“音樂舞蹈”和“手工編織”等多個社團,要求每位學生都自主選擇其中一個社團.為此,隨機調查了本校各年級部分學生選擇社團的意向,并將調查結果繪制成如下統(tǒng)計圖表(不完整):

某校被調查學生選擇社團意向統(tǒng)計表

選擇意向

文學鑒賞

科學實驗

音樂舞蹈

手工編織

其他

所占百分比

a

35%

b

10%

c

根據(jù)統(tǒng)計圖表中的信息,解答下列問題:

(1)求本次調查的學生總人數(shù)及a,b,c的值;

(2)將條形統(tǒng)計圖補充完整.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1l2,且l3l1、l2分別交于A、B兩點,點P在直線AB上.

(1)試說明∠1,∠2,∠3之間的關系式;(要求寫出推理過程)

(2)如果點PA、B兩點之間(點PA、B不重合)運動時,試探究∠1,∠2,∠3之間的關系是否發(fā)生變化?(只回答)

(3)如果點PA、B兩點外側(點PA、B不重合)運動時,試探究∠1,∠2,∠3之間的關系.(要求寫出推理過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=50°,∠ACB=60°,點E在BC的延長線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點D,連接AD,下列結論中不正確的是( )

A. ∠BAC=70° B. ∠DOC=90° C. ∠BDC=35° D. ∠DAC=55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,MPNQ分別垂直平分ABAC.

(1)若△APQ的周長為12BC的長;

(2)BAC105°,求∠PAQ的度數(shù).

查看答案和解析>>

同步練習冊答案