在平行四邊形ABCD中,∠BAD的平分線交直線BC于點E,交直線DC的延長線于點F,以EC、CF為鄰邊作平行四邊形ECFG.
(1)如圖1,證明平行四邊形ECFG為菱形;
(2)如圖2,若∠ABC=90°,M是EF的中點,求∠BDM的度數(shù);
(3)如圖3,若∠ABC=120°,請直接寫出∠BDG的度數(shù).

【答案】分析:(1)平行四邊形的性質(zhì)可得AD∥BC,AB∥CD,再根據(jù)平行線的性質(zhì)證明∠CEF=∠CFE,根據(jù)等角對等邊可得CE=CF,再有條件四邊形ECFG是平行四邊形,可得四邊形ECFG為菱形;
(2)首先證明四邊形ECFG為正方形,再證明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根據(jù)∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到∠BDM的度數(shù);
(3)延長AB、FG交于H,連接HD,求證平行四邊形AHFD為菱形,得出△ADH,△DHF為全等的等邊三角形,證明△BHD≌△GFD,即可得出答案.
解答:解:(1)證明:∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
又∵四邊形ECFG是平行四邊形,
∴四邊形ECFG為菱形.

(2)如圖,連接BM,MC,
∵∠ABC=90°,四邊形ABCD是平行四邊形,
∴四邊形ABCD是矩形,
又由(1)可知四邊形ECFG為菱形,
∠ECF=90°,
∴四邊形ECFG為正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC,
∵M為EF中點,
∴∠CEM=∠ECM=45°,
∴∠BEM=∠DCM=135°,
在△BME和△DMC中,
,
∴△BME≌△DMC(SAS),
∴MB=MD,
∠DMC=∠BME.
∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
∴△BMD是等腰直角三角形,
∴∠BDM=45°;

(3)∠BDG=60°,
延長AB、FG交于H,連接HD.
∵AD∥GF,AB∥DF,
∴四邊形AHFD為平行四邊形,
∵∠ABC=120°,AF平分∠BAD,
∴∠DAF=30°,∠ADC=120°,∠DFA=30°,
∴△DAF為等腰三角形,
∴AD=DF,
∴平行四邊形AHFD為菱形,
∴△ADH,△DHF為全等的等邊三角形,
∴DH=DF,∠BHD=∠GFD=60°,
∵FG=CE,CE=CF,CF=BH,
∴BH=GF,
在△BHD與△GFD中,

∴△BHD≌△GFD(SAS),
∴∠BDH=∠GDF
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.
點評:此題主要考查平行四邊形的判定方法,全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),菱形的判定與性質(zhì)等知識點,應(yīng)用時要認真領(lǐng)會它們之間的聯(lián)系與區(qū)別,同時要根據(jù)條件合理、靈活地選擇方法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F.試判斷AF與CE是否相等,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知如圖,在平行四邊形ABCD中,BN=DM,BE=DF.求證:四邊形MENF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鞍山一模)在平行四邊形ABCD中,∠DAB=60°,點E是AD的中點,點O是AB邊上一點,且AO=AE,過點E作直線HF交DC于點H,交BA的延長線于F,以O(shè)E所在直線為對稱軸,△FEO經(jīng)軸對稱變換后得到△F′EO,直線EF′交直線DC于點M.
(1)求證:AD∥OF′;
(2)若M點在點H右側(cè),OA=4,求DH•DM的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,AE⊥AD交BD于點E,CF⊥BC交BD于點F.求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,∠B的平分線交AD于E,AE=10,ED=4,那么平行四邊形ABCD的周長是
48
48

查看答案和解析>>

同步練習冊答案