如圖,矩形OABC的兩條邊在坐標(biāo)軸上,OA=1,OC=2,現(xiàn)將此矩形向右平移,每次平移1個單位,若第1次平移得到的矩形的邊與反比例函數(shù)圖象有兩個交點(diǎn),它們的縱坐標(biāo)之差的絕對值為0.6,則第n次(n>1)平移得到的矩形的邊與該反比例函數(shù)圖象的兩個交點(diǎn)的縱坐標(biāo)之差的絕對值為________(用含n的代數(shù)式表示).
或
【解析】設(shè)反比例函數(shù)解析式為y=,則①與BC、AB平移后的對應(yīng)邊相交時,則由兩交點(diǎn)縱坐標(biāo)之差的絕對值為0.6得與AB平移后的對應(yīng)邊相交的交點(diǎn)的坐標(biāo)為(2,1.4),代入y=,得1.4=,所以k=,
∴反比例函數(shù)解析式為y=.
則第n次(n>1)平移得到的矩形的邊與該反比例函數(shù)圖象的兩個交點(diǎn)的縱坐標(biāo)之差的絕對值為:-
則第n次(n>1)平移得到的矩形的邊與該反比例函數(shù)圖象的兩個交點(diǎn)的縱坐標(biāo)之差的絕對值為:-=.
綜上所述,第n次(n>1)平移得到的矩形的邊與該反比例函數(shù)圖象的兩個交點(diǎn)的縱坐標(biāo)之差的絕對值為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
在△ABC中,P是AB上的動點(diǎn)(P異于A、B),過點(diǎn)P的直線截△ABC,使截得的三角形與△ABC相似,我們不妨稱這種直線為過點(diǎn)P的△ABC的相似線,簡記為P(lx)(x為自然數(shù)).
(1)如圖①,∠A=90°,∠B=∠C,當(dāng)BP=2PA時,P(l1)、P(l2)都是過點(diǎn)P的△ABC的相似線(其中l(wèi)1⊥BC,l2∥AC),此外,還有 條;
(2)如圖②,∠C=90°,∠B=30°,當(dāng)= 時,P(lx)截得的三角形面積為△ABC面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,Rt△ABC中,∠ACB=90°,AC=BC=4cm,CD=1cm,若動點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動,至A點(diǎn)結(jié)束,設(shè)E點(diǎn)的運(yùn)動時間為t秒,連接DE,當(dāng)△BDE是直角三角形時,t的值為 秒。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,已知直線y=kx與拋物線交于點(diǎn)A(3,6).
(1)求直線y=kx的解析式和線段OA的長度;
(2)點(diǎn)P為拋物線第一象限內(nèi)的動點(diǎn),過點(diǎn)P作直線PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線OA于點(diǎn)Q,再過點(diǎn)Q作直線PM的垂線,交y軸于點(diǎn)N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個定值;如果不是,說明理由;
(3)如圖2,若點(diǎn)B為拋物線上對稱軸右側(cè)的點(diǎn),點(diǎn)E在線段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動點(diǎn),且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時,符合條件的E點(diǎn)的個數(shù)分別是1個、2個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將△ABC繞著點(diǎn)C順時針旋轉(zhuǎn)一定角度后得到△A′B′C′,若∠A=40°.∠B′=110°,∠BCA′=80°,則旋轉(zhuǎn)角的度數(shù)是【 】
A.110° B.80° C.50° D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在拋物線中, 拋物線頂點(diǎn)為B,與y軸交于點(diǎn)A,點(diǎn)E為線段AB中點(diǎn),點(diǎn)C(0,m)是y軸負(fù)半軸上一動點(diǎn),線段EC與線段BO相交于F,且OC:OF=2:。
(1)求m的值;
(2)動點(diǎn)P從B點(diǎn)出發(fā),沿x軸反方向勻速運(yùn)動,點(diǎn)P運(yùn)動到什么位置時(即BP長為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時的△ABP面積的,求此時點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,AB=AC,D是BA延長線上的一點(diǎn),點(diǎn)E是AC的中點(diǎn).
(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法).
①作∠DAC的平分線AM. ②連接BE并延長交AM于點(diǎn)F.
(2)猜想與證明:試猜想AF與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀理解:對于任意正實(shí)數(shù)a、b,∵(-)2≥0,∴a-2+b≥0,∴a+b≥2,只有當(dāng)a=b時,等號成立.
結(jié)論:在a+b≥2(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2,只有當(dāng)a=b時,a+b有最小值2. 根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m= 時,m+有最小值 ;
若m>0,只有當(dāng)m= 時,2m+有最小值 .
(2)如圖,已知直線L1:y=x+1與x軸交于點(diǎn)A,過點(diǎn)A的另一直線L2與雙曲線y=
(x>0)相交于點(diǎn)B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CD∥y軸交直線L1于點(diǎn)D,試
求當(dāng)線段CD最短時,點(diǎn)A、B、C、D圍成的四邊形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若Ð1+Ð2=90°,則Ð1與Ð2的關(guān)系是 ,若 Ð1+ Ð2=180°,Ð3+Ð2=180°則Ð1與Ð3的關(guān)系是 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com