【題目】已知拋物線y=﹣x2﹣2x+3與x軸交于A、B兩點,將這條拋物線的頂點記為C,連接AC、BC,則tan∠CAB的值為( )
A.
B.
C.
D.2

【答案】D
【解析】解:令y=0,則﹣x2﹣2x+3=0,解得x=﹣3或1,不妨設(shè)A(﹣3,0),B(1,0),
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴頂點C(﹣1,4),
如圖所示,作CD⊥AB于D.

在RT△ACD中,tan∠CAD= = =2,
故答案為D.
先求出A、B、C坐標(biāo),作CD⊥AB于D,根據(jù)tan∠ACD= 即可計算.本題考查二次函數(shù)與x軸交點坐標(biāo),銳角三角函數(shù)的定義,解題的關(guān)鍵是熟練掌握求拋物線與x軸交點坐標(biāo)的方法,記住銳角三角函數(shù)的定義,屬于中考?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從家騎自行車出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時,他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設(shè)他們出發(fā)后經(jīng)過t min時,小明與家之間的距離為s1m,小明爸爸與家之間的距離為s2m,圖中折線OABD、線段EF分別表示s1、s2t之間的函數(shù)關(guān)系的圖象

(1)求s2t之間的函數(shù)關(guān)系式;

(2)小明從家出發(fā),經(jīng)過多長時間在返回途中追上爸爸?這時他們距離家還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第十二屆全國人大四次會議審議通過的《中華人民共和國慈善法》將于今年9月1日正式實施,為了了解居民對慈善法的知曉情況,某街道辦從轄區(qū)居民中隨機(jī)選取了部分居民進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的扇形圖.若該轄區(qū)約有居民9000人,則可以估計其中對慈善法“非常清楚”的居民約有人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級體育模擬測試中,六名男生引體向上的成績?nèi)缦拢▎挝唬簜):10、6、9、11、8、10,下列關(guān)于這組數(shù)據(jù)描述正確的是(
A.極差是6
B.眾數(shù)是10
C.平均數(shù)是9.5
D.方差是16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】聊城“水城之眼”摩天輪是亞洲三大摩天輪之一,也是全球首座建筑與摩天輪相結(jié)合的城市地標(biāo),如圖,點O是摩天輪的圓心,長為110米的AB是其垂直地面的直徑,小瑩在地面C點處利用測角儀測得摩天輪的最高點A的仰角為33°,測得圓心O的仰角為21°,則小瑩所在C點到直徑AB所在直線的距離約為(tan33°≈0.65,tan21°≈0.38)(  )

A.169米
B.204米
C.240米
D.407米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點A,B分別在x軸,y軸上,點A的坐標(biāo)為(﹣1,0),∠ABO=30°,線段PQ的端點P從點O出發(fā),沿△OBA的邊按O→B→A→O運動一周,同時另一端點Q隨之在x軸的非負(fù)半軸上運動,如果PQ= ,那么當(dāng)點P運動一周時,點Q運動的總路程為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0),B(0,﹣ ),C(2,0),其對稱軸與x軸交于點D

(1)求二次函數(shù)的表達(dá)式及其頂點坐標(biāo);
(2)若P為y軸上的一個動點,連接PD,則 PB+PD的最小值為;
(3)M(x,t)為拋物線對稱軸上一動點
①若平面內(nèi)存在點N,使得以A,B,M,N為頂點的四邊形為菱形,則這樣的點N共有 個;
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A、B的坐標(biāo)分別為(8,0)、(0,2 ),C是AB的中點,過點C作y軸的垂線,垂足為D,動點P從點D出發(fā),沿DC向點C勻速運動,過點P作x軸的垂線,垂足為E,連接BP、EC.當(dāng)BP所在直線與EC所在直線第一次垂直時,點P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的直徑AB=6,E、F為AB的三等分點,M、N為 上兩點,且∠MEB=∠NFB=60°,則EM+FN=

查看答案和解析>>

同步練習(xí)冊答案