【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上):
①把△ABC沿BA方向平移,請在網(wǎng)格中畫出當點A移動到點A1時的△A1B1C1;
②把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°后得到△A2B2C2 , 如果網(wǎng)格中小正方形的邊長為1,求點B1旋轉(zhuǎn)到B2的路徑長.

【答案】解:①如圖所示,△A1B1C1為所求三角形;
②畫出圖形,如圖所示,
∵A1B1= = ,
∴點B1旋轉(zhuǎn)到B2的路徑長l= =

【解析】①根據(jù)△ABC沿BA方向平移,在網(wǎng)格中畫出當點A移動到點A1時的△A1B1C1即可;②畫出△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°后得到△A2B2C2 , 求出點B1旋轉(zhuǎn)到B2的路徑長即可.此題考查了作圖﹣旋轉(zhuǎn)變換,弧長公式,以及平移變換,熟練掌握旋轉(zhuǎn)及平移性質(zhì)是解本題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是半徑為1的圓O直徑,C是圓上一點,D是BC延長線上一點,過點D的直線交AC于E點,且△AEF為等邊三角形

(1)求證:△DFB是等腰三角形;
(2)若DA= AF,求證:CF⊥AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD⊥BCD,BD=AD,DG=DC,E,F(xiàn)分別是BG,AC的中點.

(1)求證:DE=DF,DE⊥DF;

(2)連接EF,若AC=2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王杰同學在解決問題“已知A、B兩點的坐標為A(3,﹣2)、B(6,﹣5)求直線AB關于x軸的對稱直線A′B′的解析式”時,解法如下:先是建立平面直角坐標系(如圖),標出A、B兩點,并利用軸對稱性質(zhì)求出A′、B′的坐標分別為A′(3,2),B′(6,5);然后設直線A′B′的解析式為y=kx+b(k≠0),并將A′(3,2)、B′(6,5)代入y=kx+b中,得方程組 ,解得 ,最后求得直線A′B′的解析式為y=x﹣1.則在解題過程中他運用到的數(shù)學思想是(

A.分類討論與轉(zhuǎn)化思想
B.分類討論與方程思想
C.數(shù)形結(jié)合與整體思想
D.數(shù)形結(jié)合與方程思想

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長分別為1和2的兩個等邊三角形,開始它們在左邊重合,大三角形固定不動,然后把小三角形自左向右平移直至移出大三角形外停止.設小三角形移動的距離為x,兩個三角形重疊面積為y,則y關于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“2016國際大數(shù)據(jù)產(chǎn)業(yè)博覽會”于5月25日至5月29日在貴陽舉行.參展內(nèi)容為:A﹣經(jīng)濟和社會發(fā)展;B﹣產(chǎn)業(yè)與應用;C﹣技術(shù)與趨勢;D﹣安全和隱私保護;E﹣電子商務,共五大板塊,為了解觀眾對五大板塊的“關注情況”,某機構(gòu)進行了隨機問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖(均不完整),請根據(jù)統(tǒng)計圖中提供的信息,解答下列問題:

(1)本次隨機調(diào)查了多少名觀眾?
(2)請補全統(tǒng)計圖,并求出扇形統(tǒng)計圖中“D﹣安全和隱私保護”所對應的扇形圓心角的度數(shù).
(3)據(jù)相關報道,本次博覽會共吸引力90000名觀眾前來參觀,請估計關注“E﹣電子商務”的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方格紙中每個小方格都的邊長為1的正方形,我們把以格點連線為邊的多邊形稱為格點多邊形”.

(1)在圖1中確定格點D,并畫出一個以A、B、C、D為頂點的四邊形,使其為軸對稱圖形;

(2)在圖2中畫一個格點正方形,使其面積等于10;

(3)直接寫出圖3△FGH的面積是  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,高,則的周長是( ).

A. 42 B. 32 C. 3733 D. 4232

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形OBCD的邊OB在x軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過菱形對角線的交點A,且與邊BC交于點F,點A的坐標為(4,2).

(1)求反比例函數(shù)的表達式;
(2)求點F的坐標.

查看答案和解析>>

同步練習冊答案