(2012•河北)如圖,拋物線y1=a(x+2)2-3與y2=
1
2
(x-3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);②a=1;③當(dāng)x=0時,y2-y1=4;④2AB=3AC;
其中正確結(jié)論是(  )
分析:根據(jù)與y2=
1
2
(x-3)2+1的圖象在x軸上方即可得出y2的取值范圍;把A(1,3)代入拋物線y1=a(x+2)2-3即可得出a的值;由拋物線與y軸的交點求出,y2-y1的值;根據(jù)兩函數(shù)的解析式直接得出AB與AC的關(guān)系即可.
解答:解:①∵拋物線y2=
1
2
(x-3)2+1開口向上,頂點坐標(biāo)在x軸的上方,∴無論x取何值,y2的值總是正數(shù),故本小題正確;
②把A(1,3)代入,拋物線y1=a(x+2)2-3得,3=a(1+2)2-3,解得a=
2
3
,故本小題錯誤;
③由兩函數(shù)圖象可知,拋物線y1=a(x+2)2-3解析式為y1=
2
3
(x+2)2-3,當(dāng)x=0時,y1=
2
3
(0+2)2-3=-
1
3
,y2=
1
2
(0-3)2+1=
11
2
,故y2-y1=-
1
3
-
11
2
=-
35
6
,故本小題錯誤;
④∵物線y1=a(x+2)2-3與y2=
1
2
(x-3)2+1交于點A(1,3),
∴y1的對稱軸為x=-2,y2的對稱軸為x=3,
∴B(-5,3),C(5,3)
∴AB=6,AC=4,
∴2AB=3AC,故本小題正確.
故選D.
點評:本題考查的是二次函數(shù)的性質(zhì),根據(jù)題意利用數(shù)形結(jié)合進(jìn)行解答是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河北)如圖,CD是⊙O的直徑,AB是弦(不是直徑),AB⊥CD于點E,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河北)如圖,在平行四邊形ABCD中,∠A=70°,將平行四邊形折疊,使點D、C分別落在點F、E處(點F、E都在AB所在的直線上),折痕為MN,則∠AMF等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河北)如圖,兩個正方形的面積分別為16,9,兩陰影部分的面積分別為a,b(a>b),則(a-b)等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河北)如圖,AB、CD相交于點O,AC⊥CD于點C,若∠BOD=38°,則∠A=
52°
52°

查看答案和解析>>

同步練習(xí)冊答案