【題目】如圖,每個小正方形的邊長為1個單位,每個小方格的頂點叫格點.

(1)畫出ABCAB邊上的中線CD;

(2)畫出ABC向右平移4個單位后得到的A1B1C1;

(3)圖中ACA1C1的關(guān)系是: ;

(4)能使S ABQ=S ABC的格點Q,共有 ,在圖中分別用Q 1,Q 2,…表示出來.

【答案】1)見解析;(2)見解析:(3)平行且相等;(44個,圖見解析.

【解析】

1)根據(jù)中線的定義得出AB的中點即可得出△ABCAB邊上的中線CD;

2)平移AB,C各點,得出各對應(yīng)點,連接得出△A1B1C1;

3)利用平移的性質(zhì)得出ACA1C1的關(guān)系;

4)首先求出SABC的面積,進(jìn)而得出Q點的個數(shù).

解:(1)如圖所示:取AB的中點D,連接CD;CD就是ABCAB邊上的中線;

2)如圖所示:將A,BC各點向右平移四個單位,得出各對應(yīng)點,然后順次連接;

3)根據(jù)平行的性質(zhì)可得:ACA1C1的關(guān)系為:平行且相等;

4)如圖所示,S ABQ=S ABC的格點Q,共有4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD,BC90°,邊BC上一點E,連結(jié)AE、DE得等邊ABC,若,則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】互聯(lián)網(wǎng)時代,發(fā)達(dá)的物流業(yè)改變了我們的生活.某快遞公司的分發(fā)中心、菜鳥驛站、快遞員公寓依次分布在同一條直線上,快遞員甲、乙分別同時從菜鳥驛站和分發(fā)中心出發(fā),甲先騎自行車回到分發(fā)中心,將自行車歸還分發(fā)中心后步行經(jīng)過菜鳥驛站返回公寓(歸還自行車的時間忽略不計),乙先從分發(fā)中心步行到菜鳥驛站,步行速度與甲的步行速度相同,到達(dá)菜鳥驛站后停下來繼續(xù)完成剩余工作,隨后跑步回公寓,最后兩人同時到達(dá)公寓.甲、乙兩人與公寓的距離y()與出發(fā)的時間x(分鐘)之間的關(guān)系如圖所示.

(1)甲騎自行車的速度為 /分,乙跑步的速度為 /;

(2)乙在菜鳥驛站停留的時間為 分鐘;

(3)甲乙第二次相遇后再經(jīng)過多少分鐘他們相距450米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,∠175°,∠2105°,∠C=∠D.判斷 A F的大小關(guān)系,并說明理由.

2)對于某些數(shù)學(xué)問題,靈活運用整體思想,可以化難為易.在解二元一次方程組時,就可以運用整體代入法:如解方程組:.

解:把②代入①得,解得代入②得,

所以方程組的解為

請用同樣的方法解方程組:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OFMON的平分線,點A在射線OM上,P,Q是直線ON上的兩動點,點Q在點P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點B、點C,連接AB、PB

1)如圖1,當(dāng)P、Q兩點都在射線ON上時,請直接寫出線段ABPB的數(shù)量關(guān)系;

2)如圖2,當(dāng)PQ兩點都在射線ON的反向延長線上時,線段ABPB是否還存在(1)中的數(shù)量關(guān)系?若存在,請寫出證明過程;若不存在,請說明理由;

3)如圖3MON=60°,連接AP,設(shè)=k,當(dāng)PQ兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究并解決問題:

探究

倍延三角形的一條中線,我們可以發(fā)現(xiàn)一些有用的結(jié)論.

已知,如圖①所示,ADABC的中線,延長ADE,使AD=DE,連接BE、CE.

1)求證:ABCE.

2)請再寫出兩條不同類型的結(jié)論.

解決問題

如圖所示②,分別以ABC的邊ABAC為邊,向三角形的外側(cè)作兩個等腰直角三角形,AB=AD,AC=AE,BAD = CAE=90°,點MBC的中點,連接DE,AM,試問線段AMDE之間存在什么關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,,點EAD上,且,連接EC,將矩形ABCD沿直線BE翻折,點A恰好落在EC上的點A'處,則____________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4BC=6,EBC邊的中點,點P在線段AD上,過PPFAEF,設(shè)PA=x

1)求證:PFA∽△ABE

2)當(dāng)點P在線段AD上運動時,設(shè)PA=x,是否存在實數(shù)x,使得以點P,FE為頂點的三角形也與ABE相似?若存在,請求出x的值;若不存在,請說明理由;

3)探究:當(dāng)以D為圓心,DP為半徑的⊙D線段AE只有一個公共點時,請直接寫出x滿足的條件:   

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦了一次趣味數(shù)學(xué)競賽,滿分100分,學(xué)生得分均為整數(shù),達(dá)到成績60分及以上為合格,達(dá)到90分及以上為優(yōu)秀,這次競賽中,甲乙兩組學(xué)生成績?nèi)缦,甲組:30,60,60,60,60,60,70,90,90,100 ;乙組:50,60,60,60,70,70,70,70,80,90.

1)以上成績統(tǒng)計分析表中a=______分,b=______分,c=_______分;

組別

平均數(shù)

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

68

a

376

30%

乙組

b

c

90%

2)小亮同學(xué)說:這次競賽我得了70分,在我們小組中屬于中游略偏上,觀察上面表格判斷,小亮可能是甲乙哪個組的學(xué)生?并說明理由

3)計算乙組的方差和優(yōu)秀率,如果你是該校數(shù)學(xué)競賽的教練員,現(xiàn)在需要你選一組同學(xué)代表學(xué)校參加復(fù)賽,你會選擇哪一組?并說明理由

查看答案和解析>>

同步練習(xí)冊答案