【題目】如圖,OF是∠MON的平分線,點A在射線OM上,P,Q是直線ON上的兩動點,點Q在點P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點B、點C,連接AB、PB.
(1)如圖1,當(dāng)P、Q兩點都在射線ON上時,請直接寫出線段AB與PB的數(shù)量關(guān)系;
(2)如圖2,當(dāng)P、Q兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請寫出證明過程;若不存在,請說明理由;
(3)如圖3,∠MON=60°,連接AP,設(shè)=k,當(dāng)P和Q兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.
【答案】(1)AB=PB;(2)存在;(3)k=0.5.
【解析】試題分析:(1)結(jié)論:AB=PB.連接BQ,只要證明△AOB≌△PQB即可解決問題;
(2)存在.證明方法類似(1);
(3)連接BQ.只要證明△ABP∽△OBQ,即可推出=,由∠AOB=30°,推出當(dāng)BA⊥OM時, 的值最小,最小值為0.5,由此即可解決問題;
試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∴∠AOB=∠BQO,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(2)存在,理由:如圖2中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(3)連接BQ.
易證△ABO≌△PBQ,∴∠OAB=∠BPQ,AB=PB,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BPA=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴ =,∵∠AOB=30°,∴當(dāng)BA⊥OM時, 的值最小,最小值為0.5,∴k=0.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,c)三點,其中a、b、c滿足關(guān)系式+(b﹣3)2=0,(c﹣4)2≤0
(1)求a、b、c的值;
(2)如果在第二象限內(nèi)有一點P(﹣m,),請用含m的式子表示四邊形ABOP的面積;
(3)在(2)的條件下,是否存在點P,使四邊形ABOP的面積與△ABC的面積相等?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B、E分別在AC、DF上,AF分別交BD、CE于點M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA、OC分別在x軸、y軸上,點B坐標(biāo)為(4,t)(t>0),二次函數(shù)(b<0)的圖象經(jīng)過點B,頂點為點D.
(1)當(dāng)t=12時,頂點D到x軸的距離等于 ;
(2)點E是二次函數(shù)(b<0)的圖象與x軸的一個公共點(點E與點O不重合),求OEEA的最大值及取得最大值時的二次函數(shù)表達(dá)式;
(3)矩形OABC的對角線OB、AC交于點F,直線l平行于x軸,交二次函數(shù)(b<0)的圖象于點M、N,連接DM、DN,當(dāng)△DMN≌△FOC時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△A1C1C2的周長為1,作C1D1⊥A1C2于D1,在C1C2的延長線上取點C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延長線上取點C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊△A3C3C4;…且點A1,A2,A3,…都在直線C1C2同側(cè),如此下去,則△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1的周長和為______.(n≥2,且n為整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A,B,C,三點坐標(biāo)分別為A(﹣6,3),B(﹣4,1),C(﹣1,1).
(1)如圖1,順次連接AB,BC,CA,得△ABC.
①點A關(guān)于x軸的對稱點A1的坐標(biāo)是 ,點B關(guān)于y軸的對稱點B1的坐標(biāo)是 ;
②畫出△ABC關(guān)于原點對稱的△A2B2C2;
③tan∠A2C2B2= ;
(2)利用四邊形的不穩(wěn)定性,將第二象限部分由小正方形組成的網(wǎng)格,變化為如圖2所示的由小菱形組成的網(wǎng)格,每個小菱形的邊長仍為1個單位長度,且較小內(nèi)角為60°,原來的格點A,B,C分別對應(yīng)新網(wǎng)格中的格點A′,B′,C′,順次連接A′B′,B′C′,C′A′,得△A′B′C′,則tan∠A′C′B′= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點C,使AC=AB;
②作∠ABM 的角平分線交AC于D點;
③在射線CM上作一點E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關(guān)系,并證明之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段a、b、c滿足a:b:c=3:2:6,且a+2b+c=26.
(1)求a、b、c的值;
(2)若線段x是線段a、b的比例中項,求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com