【題目】如圖1,直線AB上有一點P,點M、N分別為線段PA、PB的中點,AB=14.

(1)若點P在線段AB上,且AP=8,求線段MN的長度;

(2)若點P在直線AB上運動,設(shè)APx,BPy,請分別計算下面情況時MN的長度:

①當(dāng)PAB之間(含A或B);

②當(dāng)PA左邊;

③當(dāng)PB右邊;

你發(fā)現(xiàn)了什么規(guī)律?

(3)如圖2,若點C為線段AB的中點,點P在線段AB的延長線上,下列結(jié)論:①的值不變;②的值不變,請選擇一個正確的結(jié)論并求其值.

圖1

,

圖2

,

【答案】(1)7.(2)①點PAB之間,MN(xy);②點PA左邊,MN(yx);③點PBA的延長線上,MN(xy);(3)選擇②① (在變化);②=2

【解析】

(1)AP=8且點MAP的中點易得MPAP=4,BP=ABAP=6,再由點NPB的中點可知PNPB=3,MNMPPN=7;

(2)根據(jù)線段中點的性質(zhì),可得MPNP的表達式,再根據(jù)線段的和差關(guān)系分別計算三種情況下MN的長度即可;

(3)根據(jù)線段的和差,分別可得PA-PB=AB,PA+PB=PC+AC+PC-BC=2PC,再根據(jù)分式的性質(zhì)即可判斷.

解:(1)∵AP=8,點MAP的中點,

MPAP=4,

BPABAP=6.

NPB的中點,

PNPB=3,

MNMPPN=7.

(2)①PAB之間,MNMPPN==(xy);

PA左邊,MNPN-MP=-=(yx);

PBA的延長線上,MN=MP-PN=-==(xy).

(3)選擇②.

,由于PC長度不固定,故 的值是變化的;

,是定值

故正確的結(jié)論是,其值為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上AB、C三點表示的數(shù)分別為、,且滿足

(1)= , = ;

(2)動點PA點出發(fā),以每秒10個單位的速度沿數(shù)軸向右運動,到達B點停留片刻后立即以每秒6個單位的速度沿數(shù)軸返回到A點,共用了6秒;其中從CB,返回時從BC(包括在B點停留的時間)共用了2

①求C點表示的數(shù);

②設(shè)運動時間為秒,求為何值時,點PA、B、C三點的距離之和為23個單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】①下午 2 點 10 分時,鐘表的時針和分針?biāo)射J角是________;

②如圖,射線 OC,OD 在∠AOB 的內(nèi)部,射線 OM,ON 分別平分∠AOD,∠BOC, 且∠BON=50°,∠AOM=40°,∠COD=30°,則∠AOB 的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在求1+3+32+33+34+35+36+37+38的值時,李敏發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38,

然后在①式的兩邊都乘3,得3S=3+32+33+34+35+36+37+38+39

①得,3S-S=39-1,即2S=39-1,

所以S=.

得出答案后,愛動腦筋的張紅想:如果把“3”換成字母a(a≠0a≠1),能否求出1+a+a2+a3+a4+…+a2 017的值?如能求出,其正確答案是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式
12=1= ×1×2×(2+1)
12+22= ×2×3×(4+1)
12+22+32= ×3×4×(6+1)
12+22+32+42= ×4×5×(8+1)…
可以推測12+22+32+…+n2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A=2x2+ax﹣5y+b,B=bx2x﹣y﹣3.

(1)求3A﹣(4A﹣2B)的值;

(2)當(dāng)x取任意數(shù)值,A﹣2B的值是一個定值時,求(a+A)﹣(2b+B)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等腰直角三角形,∠BAC=90°,CD= BC,DE⊥CE,DE=CE,連接AE,點M是AE的中點.
(1)如圖1,若點D在BC邊上,連接CM,當(dāng)AB=4時,求CM的長;
(2)如圖2,若點D在△ABC的內(nèi)部,連接BD,點N是BD中點,連接MN,NE,求證:MN⊥AE;
(3)如圖3,將圖2中的△CDE繞點C逆時針旋轉(zhuǎn),使∠BCD=30°,連接BD,點N是BD中點,連接MN,探索 的值并直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口P,4小時后貨船在小島的正東方向.求貨船的航行速度.(精確到0.1海里/時,參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖所示,直線y=-x+3與坐標(biāo)軸分別交于點A,B,與直線y=x交于點C,線段OA上的點Q以每秒1個單位的速度從點O出發(fā)向點A作勻速運動,運動時間為t秒,連結(jié)CQ.

(1)求出點C的坐標(biāo);

(2)OQC是等腰直角三角形,則t的值為________;

(3)CQ平分OAC的面積,求直線CQ對應(yīng)的函數(shù)表達式.

查看答案和解析>>

同步練習(xí)冊答案