【題目】如圖,拋物線y=x2-3x+與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E.
(1)求直線BC的解析式;
(2)當線段DE的長度最大時,求點D的坐標.
【答案】(1)(2)(, )
【解析】試題分析:(1)求BC得解析式,只需要求出,B,C,點的坐標就可以,B,C,分別為二次函數(shù)與x軸,y軸的交點.
(2)先設出設點D的橫坐標為m,D,E 點坐標都可以用m表示出來,然后DE長度也可以用m表示出來,DE的長度是關于m的一個二次函數(shù),二次函數(shù)配方求最值即可.
試題解析:解:(1)∵拋物線y=x2-3x+與x軸相交于A、B兩點,與y軸相交于點C,∴令y=0,可得x=或x=,
∴A點坐標為,B點坐標為;令x=0,則y=,
∴C點坐標為.設直線BC的解析式為y=kx+b,則有解得∴直線BC的解析式為y=-x+;
(2)設點D的橫坐標為m,則坐標為,∴E點的坐標為.設DE的長度為d.
∵點D是直線BC下方拋物線上一點,則d=-m+-=-m2+m.
∵a=-1<0,∴當m==時,d有最大值,d最大==,
∴m2-3m+=-3×+=-,
∴點D的坐標為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸、y軸分別交于A(-1,0)、B(3,0)、C(0,3)三點.
(1)試求拋物線的解析式;
(2)P是直線BC上方的拋物線上的一個動點,設P的橫坐標為t,P到BC的距離為h,求h與t的函數(shù)關系式,并求出h的最大值;
(3)設點M是x軸上的動點,在平面直角坐標系中,是否存在點N,使得以點A、C、M、N為頂點的四邊形是菱形?若存在,求出所有符合條件的點N坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一組數(shù)據(jù)a1,a2,a3,a4的平均數(shù)是2017,則另一組數(shù)據(jù)a1+3,a2﹣2,a3﹣2,a4+5的平均數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題: 某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調查:每個玩具按480元銷售時,每天可銷售160個;若銷售單價每降低1元,每天可多售出2個,已知每個玩具的固定成本為360元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤20000元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com