【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.
【答案】(1),;(2)M(-1,2);(3)P的坐標為(-1,-2)或(-1,4) 或(-1,) 或(-1,).
【解析】試題分析:(1)先把點A,C的坐標分別代入拋物線解析式得到a和b,c的關(guān)系式,再根據(jù)拋物線的對稱軸方程可得a和b的關(guān)系,再聯(lián)立得到方程組,解方程組,求出a,b,c的值即可得到拋物線解析式;把B、C兩點的坐標代入直線y=mx+n,解方程組求出m和n的值即可得到直線解析式;
(2)設(shè)直線BC與對稱軸x=-1的交點為M,則此時MA+MC的值最。x=-1代入直線y=x+3得y的值,即可求出點M坐標;
(3)設(shè)P(-1,t),又因為B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三種情況分別討論求出符合題意t值即可求出點P的坐標.
試題解析:(1)依題意得: ,
解之得:
∴拋物線解析式為y=-x2-2x+3
∵對稱軸為x=-1,且拋物線經(jīng)過A(1,0),
∴把B(-3,0)、C(0,3)分別代入直線y=mx+n,
得,
解之得: ,
∴直線y=mx+n的解析式為y=x+3;
(2)設(shè)直線BC與對稱軸x=-1的交點為M,則此時MA+MC的值最。
把x=-1代入直線y=x+3得,y=2,
∴M(-1,2),
即當點M到點A的距離與到點C的距離之和最小時M的坐標為(-1,2);
(3)設(shè)P(-1,t),
又∵B(-3,0),C(0,3),
∴BC2=18,PB2=(-1+3)2+t2=4+t2,
PC2=(-1)2+(t-3)2=t2-6t+10,
①若點B為直角頂點,則BC2+PB2=PC2
即:18+4+t2=t2-6t+10解之得:t=-2;
②若點C為直角頂點,則BC2+PC2=PB2
即:18+t2-6t+10=4+t2解之得:t=4,
③若點P為直角頂點,則PB2+PC2=BC2
即:4+t2+t2-6t+10=18解之得:t1=,t2=;
綜上所述P的坐標為(-1,-2)或(-1,4)或(-1, ) 或(-1, ).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市5萬名初中畢業(yè)生的中考數(shù)學(xué)成績,從中抽取500名學(xué)生的中考數(shù)學(xué)成績進行統(tǒng)計分析,那么樣本是( )
A. 被抽取500名學(xué)生的中考數(shù)學(xué)成績B. 5萬名初中畢業(yè)生
C. 某市5萬名初中畢業(yè)生的中考數(shù)學(xué)成績D. 500
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖①,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點,點P在該拋物線上(P點與A、B兩點不重合).如果△ABP的三邊滿足AP2+BP2=AB2,則稱點P為拋物線y=ax2+bx+c(a≠0)的勾股點.
(1)直接寫出拋物線y=-x2+1的勾股點的坐標.
(2)如圖②,已知拋物線y=ax2+bx(a≠0)與x軸交于A,B兩點,點P(1, )是拋物線的勾股點,求拋物線的函數(shù)表達式.
(3)在(2)的條件下,點Q在拋物線上,求滿足條件S△ABQ=S△ABP的Q點(異于點P)的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).
(1)此時小強頭部E點與地面DK相距多少?
(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應(yīng)向前或后退多少?
(sin80°≈0.98,cos80°≈0.17, ≈1.41,結(jié)果精確到0.1cm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2-3x+與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E.
(1)求直線BC的解析式;
(2)當線段DE的長度最大時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某報紙上刊登了一則新聞,“某種品牌的節(jié)能燈的合格率為95%”,請據(jù)此回答下列問題:
(1)這則新聞是否說明市面上所有這種品牌的節(jié)能燈恰有5%為不合格?
(2)你認為這則消息來源于普查,還是抽樣調(diào)查?為什么?
(3)如果已知在這次檢查中合格產(chǎn)品有76個,則共有多少個節(jié)能燈接受檢查?
(4)如果此次檢查了兩種產(chǎn)品,數(shù)據(jù)如下表所示,有人由此認為“A品牌的不合格率比B品牌低,更讓人放心”.你同意這種說法嗎?為什么?
品牌 | A品牌 | B品牌 |
被檢測數(shù) | 70 | 10 |
不合格數(shù) | 3 | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com