【題目】如圖,在正方形ABCD中,點(diǎn)E在AB邊上,點(diǎn)F在BC邊的延長(zhǎng)線上,且AE=CF
(1)求證:△AED≌△CFD;
(2)將△AED按逆時(shí)針方向至少旋轉(zhuǎn)多少度才能與△CFD重合,旋轉(zhuǎn)中心是什么?

【答案】
(1)解:∵四邊形ABCD是正方形,

∴AD=CD,∠A=∠DCB=∠ADC=90°,

∴∠A=∠DCF=90°.

在△AED和△CFD中,

,

∴△AED≌△CFD(SAS)


(2)解:∵∠ADC=90°,

∴△AED按逆時(shí)針方向至少旋轉(zhuǎn)90度才能與△CFD重合,旋轉(zhuǎn)中心是點(diǎn)D


【解析】(1)由正方形的性質(zhì)就可以得出AD=CD,∠A=∠DCF=90°,再由SAS就可以得出結(jié)論;(2)由∠ADC=90°就可以得出△AED按逆時(shí)針方向至少旋轉(zhuǎn)90度才能與△CFD重合,旋轉(zhuǎn)中心是點(diǎn)D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形;①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)

(1)請(qǐng)畫出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1;
(2)請(qǐng)畫出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形△A2B2C2;
(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.

(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.

①在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.哥哥的身高比弟弟高是必然事件
B.今年中秋節(jié)有雨是不確定事件
C.隨機(jī)拋一枚均勻的硬幣兩次,都是正面朝上是不可能事件
D.“彩票中獎(jiǎng)的概率為 ”表示買5張彩票肯定會(huì)中獎(jiǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某水上樂園有一個(gè)滑梯AB,高度AC為6米,傾斜角為60°,暑期將至,為改善滑梯AB的安全性能,把傾斜角由60°減至30°

(1)求調(diào)整后的滑梯AD的長(zhǎng)度;
(2)調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù): ≈1.41, , ≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)絡(luò)購物越來越方便快捷,遠(yuǎn)方的朋友通過網(wǎng)購就可以迅速品嘗到茂名的新鮮荔枝,同時(shí)也增加了種植戶的收入,種植戶老張去年將全部荔枝按批發(fā)價(jià)賣給水果商,收入6萬元,今年的荔枝產(chǎn)量比去年增加2000千克,計(jì)劃全部采用互聯(lián)網(wǎng)銷售,網(wǎng)上銷售比去年的批發(fā)價(jià)高50%,若按此價(jià)格售完,今年的收入將達(dá)到10.8萬元.
(1)去年的批發(fā)價(jià)和今年網(wǎng)上售價(jià)分別是多少?
(2)若今年老張按(1)中的網(wǎng)上售價(jià)銷售,則每天的銷量相同,20天恰好可將荔枝售完,經(jīng)調(diào)查發(fā)現(xiàn),當(dāng)網(wǎng)上售價(jià)每上升0.1元/千克,每日銷量將減少5千克,將網(wǎng)上售價(jià)定為多少,才能使日銷量收入最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線;
(2)若OB=5,OP= ,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的兩個(gè)根,則實(shí)數(shù)x1 , x2 , a,b的大小關(guān)系為(
A.x1<x2<a<b
B.x1<a<x2<b
C.x1<a<b<x2
D.a<x1<b<x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長(zhǎng)線交于點(diǎn)F.
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案