【題目】如圖,正方形ABCD和正方形AEFG有一個公共點(diǎn)A,點(diǎn)G、E分別在線段AD、AB上.
(1)連接DF、BF,若將正方形AEFG繞點(diǎn)A按順時針方向旋轉(zhuǎn),判斷命題“在旋轉(zhuǎn)的過程中,線段DF與BF的長始終相等”是否正確?答: .
(2)若將正方形AEFG繞點(diǎn)A按順時針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)過程中,你能否找到一條線段的長與線段DG的長始終相等?并以圖為例說明理由.
【答案】
(1)不正確
(2)解:連接BE,可得△ADG≌△ABE,
則DG=BE.如圖,
∵四邊形ABCD是正方形,
∴AD=AB,
∵四邊形GAEF是正方形,
∴AG=AE,
又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,
∴∠DAG=∠BAE,
∴△DAG≌△BAE,
∴DG=BE.
【解析】(1)顯然,當(dāng)A,F(xiàn),B在同一直線上時,DF≠BF.(2)注意使用兩個正方形的邊和90°的角,可判斷出△DAG≌△BAE,那么DG=BE.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀資料:我們把頂點(diǎn)在圓上,并且一邊和圓相交、另一邊和圓相切的角叫做弦切角,如圖1∠ABC所示.同學(xué)們研究發(fā)現(xiàn):P為圓上任意一點(diǎn),當(dāng)弦AC經(jīng)過圓心O時,且AB切⊙O于點(diǎn)A,此時弦切角∠CAB=∠P(圖2)
證明:∵AB切⊙O于點(diǎn)A,∴∠CAB=90°,又∵AC是直徑,∴∠P=90°∴∠CAB=∠P
問題拓展:若AC不經(jīng)過圓心O(如圖3),該結(jié)論:弦切角∠CAB=∠P還成立嗎?請說明理由.
知識運(yùn)用:如圖4,AD是△ABC中∠BAC的平分線,經(jīng)過點(diǎn)A的⊙O與BC切于點(diǎn)D,與AB、AC分別相交于E、F.求證:EF∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,則下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,四邊形ABCD是菱形
B. 當(dāng)AC⊥BD時,四邊形ABCD是菱形
C. 當(dāng)∠ABC=90°時,四邊形ABCD是矩形
D. 當(dāng)AC=BD時,四邊形ABCD是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個二次函數(shù)圖象的對稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】殘缺的圓形輪片上,弦AB的垂直平分線交弧AB于點(diǎn)C,交弦AB于點(diǎn)D.測得AB=24cm,CD=8cm.求這個圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個三位數(shù),其個位數(shù)加上十位數(shù)等于百位數(shù),可表示為t=100(x+y)+10y+x,則稱實(shí)數(shù)t為“加成數(shù)”,將t的百位作為個位,個位作為十位,十位作為百位,組成一個新的三位數(shù)h.規(guī)定q=t﹣h,f(m)=,例如:321是一個“加成數(shù)”,將其百位作為個位,個位作為十位,十位作為百位,得到的數(shù)h=213,∴q=321﹣213=108,f(m)==12.
(1)當(dāng)f(m)最小時,求此時對應(yīng)的“加成數(shù)”的值;
(2)若f(m)是24的倍數(shù),則稱f(m)是“節(jié)氣數(shù)”,猜想這樣的“節(jié)氣數(shù)”有多少個,并求出所有的“節(jié)氣數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程,是一元二次方程的是( )
①3x2+x=20,②2x2﹣3xy+4=0,③x2 =4,④x2=0,⑤x2﹣3x﹣4=0.
A.①②
B.①②④⑤
C.①③④
D.①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、D、E在⊙O上,弦AE、BD的延長線相交于點(diǎn)C.若AB是⊙O的直徑,D是BC的中點(diǎn).
(1)試判斷AB、AC之間的大小關(guān)系,并給出證明;
(2)在上述題設(shè)條件下,當(dāng)△ABC為正三角形時,點(diǎn)E是否AC的中點(diǎn)?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com