【題目】某燈具廠計(jì)劃一天生產(chǎn)300盞景觀燈,但由于各種原因,實(shí)際每天生產(chǎn)景觀燈數(shù)與計(jì)劃每天生產(chǎn)景觀燈數(shù)相比有出入.下表是某周的生產(chǎn)情況(增產(chǎn)記為正、減產(chǎn)記為負(fù)):

星期

增減

1)求該廠本周實(shí)際生產(chǎn)景觀燈的盞數(shù);

2)求產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)景觀燈的盞數(shù);

3)該廠實(shí)行每日計(jì)件工資制,每生產(chǎn)一盞景觀燈可得60元,若超額完成任務(wù),則超過(guò)部分每盞另獎(jiǎng)20元,若未能完成任務(wù),則少生產(chǎn)一盞扣25元,那么該廠工人這一周的工資總額是多少元?

【答案】(1)2107;(2) 19; 3126475.

【解析】分析:(1)根據(jù)有理數(shù)的加法,可得答案;(2)根據(jù)有理數(shù)的減法,可得答案;(3)這一周的工資總額是基本工資加獎(jiǎng)金,可得答案.

本題解析:

(1)(3-5-2 +9-7+12-3 ) + 300×7=2107().

(2)產(chǎn)量最多的一天生產(chǎn)景觀燈300+12=312(),產(chǎn)量最少的一天生產(chǎn)景觀燈300-7=293(),

312-293=19().

產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)景觀燈19

(3) 2107×60+(3+9+12) ×20-(5+2+7+3) ×25 = 126475().

該廠工人這一周的工資總額是126475.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)多邊形的內(nèi)角和是900°,則這個(gè)多邊形是(

A. 四邊形 B. 五邊形 C. 六邊形 D. 七邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】貴陽(yáng)市某中學(xué)開展以三創(chuàng)一辦為中心,以校園文明為主題的手抄報(bào)比賽,同學(xué)們積極參與,參賽同學(xué)每人交了一份得意作品,所有參賽作品均獲獎(jiǎng),獎(jiǎng)項(xiàng)分為一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)和優(yōu)秀獎(jiǎng),將獲獎(jiǎng)結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)圖中所給信息解答下列問(wèn)題:

(1)一等獎(jiǎng)所占的百分比是   

(2)在此次比賽中,一共收到多少份參賽作品?請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)各獎(jiǎng)項(xiàng)獲獎(jiǎng)學(xué)生分別有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若﹣x2yn與3yx2是同類項(xiàng),則n的值是( )
A.﹣1
B.3
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B是數(shù)軸上的兩個(gè)點(diǎn),點(diǎn)A表示的數(shù)為13,點(diǎn)B表示的數(shù)為-5,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.

(1)BP= 點(diǎn)P表示的數(shù) (分別用含的代數(shù)式表示);

(2)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),PB=2PA?

(3)MBP的中點(diǎn),NPA的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a=﹣2×32 , b=(﹣2×3)2 , c=﹣(2×3)2 , 則下列大小關(guān)系中正確的是(
A.a>b>c
B.b>c>a
C.b>a>c
D.c>a>b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABE為等腰直角三角形,∠ABE=90°,BC=BD,∠FAD=30°.

(1)求證:△ABC≌△EBD;
(2)求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(a22+|b+3|0,則ba的值是( 。

A. 9B. 9C. 8D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O中,直徑CD弦AB于E,AMBC于M,交CD于N,連接AD.

(1)求證:AD=AN;

(2)若AB=8,ON=1,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案