如圖,若用半徑為9,圓心角為的扇形圍成一個圓錐的側(cè)面(接縫忽略不計),
則這個圓錐的底面半徑是                                      (   )
A.1.5B.2C.3D.6
C
本題考查圓錐的側(cè)面展開圖.根據(jù)圖形可知,圓錐的側(cè)面展開圖為扇形,且其弧長等于圓錐底面圓的周長.
解:設(shè)這個圓錐的底面半徑是R,則有2πR=120π×,解得:R=3.
故答案選C。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知⊙O1的半徑為3cm,⊙O2的半徑為5cm,圓心距O1O2為2cm,則⊙O1和⊙O2的位置關(guān)系是  (   )
A.相交B.外離C.外切D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分,第(1)題7分,第(2)題5分)
如圖,在⊙O中,直徑AB與弦CD垂直,垂足為E,連接AC,將△ACE沿AC翻折得到△ACF,直線FC與直線AB相交于點G.
(1)證明:直線FC與⊙O相切;
(2)若,求證:四邊形OCBD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)如圖直角坐標系中,已知A(-4,0),B(0,3),點M在線段A
上.
(1)如圖1,如果點M是線段AB的中點,且⊙M的半徑為2,試判斷直線OB與⊙M的位置關(guān)系,并說明理由;
(2)如圖2,⊙M與x軸、y軸都相切,切點分別是點E、F,試求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)如圖,已知直角梯形ABCD中,AD//BC, DC⊥BC,AB=5,BC=6,∠B=53°.點O為BC邊上的一個點,連結(jié)OD,以O(shè)為圓心,BO為半徑的⊙O分別交邊AB于點P,交線段OD于點M,交射線BC于點N,連結(jié)MN.

(1)當BO=AD時,求BP的長;
(2)在點O運動的過程中,線段 BP與MN能否相等?若能,請求出當BO為多長時BP=MN;若不能,請說明理由;
(3)在點O運動的過程中,以點C為圓心,CN為半徑作⊙C,請直接寫出當⊙C存在時,⊙O與⊙C的位置關(guān)系,以及相應(yīng)的⊙C半徑CN的取值范圍.
(參考數(shù)據(jù):cos53°≈0.6;sin53°≈0.8;tan74°3.5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(11·貴港)(本題滿分11分)
如圖所示,在以O(shè)為圓心的兩個同心圓中,小圓的半徑為1,AB與小圓相切于點A,與大圓相交于點B,大圓的弦BC⊥AB于點B,過點C作大圓的切線CD交AB的延長線于點D,連接OC交小圓于點E,連接BE、BO.

(1)求證:△AOB∽△BDC;
(2)設(shè)大圓的半徑為x,CD的長為y:
①求y與x之間的函數(shù)關(guān)系式;
②當BE與小圓相切時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形鐵皮上剪下一個圓和扇形(圓與扇形外切,且與正方形的邊相切),
使之恰好圍成如圖所示的一個圓錐模型,設(shè)圓半徑為,扇形半徑為R,則R與的關(guān)系是  (   )
A.R=2rB.R="4r"
C.R=2πrD.R=4πr

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,DE=3,
連接BD,過點E作EM∥BD,交BA的延長線于點M.

(1)求⊙O的半徑;
(2)求證:EM是⊙O的切線;
(3)若弦DF與直徑AB相交于點P,當∠APD=45º時,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(11·丹東)已知:線段AB=3.5cm,⊙A和⊙B的半徑分別是1.5cm和4cm,則⊙A和⊙B的位置關(guān)系是____________.

查看答案和解析>>

同步練習(xí)冊答案