【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.
(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請(qǐng)直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請(qǐng)判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.
【答案】
(1)
解:PM=PN,PM⊥PN,理由如下:
∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS),
∴AE=BD,∠EAC=∠CBD,
∵點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),
∴PM= BD,PN= AE,
∴PM=PM,
∵PM∥BD,PN∥AE,AE⊥BD,
∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,
∴∠MPA+∠NPC=90°,
∴∠MPN=90°,
即PM⊥PN;
(2)
解:∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,
∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD.
∴△ACE≌△BCD.
∴AE=BD,∠CAE=∠CBD.
又∵∠AOC=∠BOE,
∠CAE=∠CBD,
∴∠BHO=∠ACO=90°.
∵點(diǎn)P、M、N分別為AD、AB、DE的中點(diǎn),
∴PM= BD,PM∥BD;
PN= AE,PN∥AE.
∴PM=PN.
∴∠MGE+∠BHA=180°.
∴∠MGE=90°.
∴∠MPN=90°.
∴PM⊥PN.
(3)
解:PM=kPN∵△ACB和△ECD是直角三角形,
∴∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD.
∵BC=kAC,CD=kCE,
∴ =k.
∴△BCD∽△ACE.
∴BD=kAE.
∵點(diǎn)P、M、N分別為AD、AB、DE的中點(diǎn),
∴PM= BD,PN= AE.
∴PM=kPN.
【解析】(1)由等腰直角三角形的性質(zhì)易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質(zhì)可得PM⊥PN;(2)(1)中的結(jié)論仍舊成立,由(1)中的證明思路即可證明;(3)PM=kPN,由已知條件可證明△BCD∽△ACE,所以可得BD=kAE,因?yàn)辄c(diǎn)P、M、N分別為AD、AB、DE的中點(diǎn),所以PM= BD,PN= AE,進(jìn)而可證明PM=kPN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點(diǎn)D,E,過(guò)點(diǎn)D作DF⊥AC,垂足為F,線段FD,AB的延長(zhǎng)線相交于點(diǎn)G.
(1)求證:DF是⊙O的切線;
(2)若CF=1,DF= ,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于問(wèn)題:證明不等式a2+b2≥2ab,甲、乙兩名同學(xué)的作業(yè)如下: 甲:根據(jù)一個(gè)數(shù)的平方是非負(fù)數(shù)可知(a﹣b)2≥0,
∴a2﹣2ab+b2≥0,
∴a2+b2≥2ab.
乙:如圖1,兩個(gè)正方形的邊長(zhǎng)分別為a、b(b≤a),如圖2,先將邊長(zhǎng)為a的正方形沿虛線部分分別剪成Ⅰ、Ⅱ、Ⅲ三部分,若再將Ⅰ、Ⅱ和邊長(zhǎng)為b的正方形拼接成如圖3所示的圖形,可知此時(shí)圖3的面積為2ab,其面積小于或等于原來(lái)兩個(gè)正方形的面積和,故不等式a2+b2≥2ab成立.
則對(duì)于兩人的作業(yè),下列說(shuō)法正確的是( )
A.甲、乙都對(duì)
B.甲對(duì),乙不對(duì)
C.甲不對(duì),乙對(duì)
D.甲、乙都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,以矩形ABCD的對(duì)角線AC的中點(diǎn)O為圓心,OA長(zhǎng)為半徑作⊙O,過(guò)點(diǎn)B作BK⊥AC,垂足為K,過(guò)D作DH∥KB,DH分別與AC,AB,⊙O及CB的延長(zhǎng)線相交于點(diǎn)E,F(xiàn),G,H,且F是EG的中點(diǎn).
(1)求證:點(diǎn)D在⊙O上;
(2)求證:F是AB的中點(diǎn);
(3)若DE=4,求⊙O的半徑和△BFH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù) 的圖象交于C、D兩點(diǎn),DE⊥x軸于點(diǎn)E.已知C點(diǎn)的坐標(biāo)是(6,﹣1),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式.
(2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,點(diǎn)A,B分別在x軸和y軸上, ,∠AOB的角平分線與OA的垂直平分線交于點(diǎn)C,與AB交于點(diǎn)D,反比例函數(shù)y= 的圖象過(guò)點(diǎn)C,若以CD為邊的正方形的面積等于 ,則k的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論: ①4ac<b2;
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0;
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3;
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在矩形ABCD中,BC=6,CD=3,將△BCD沿對(duì)角線BD翻折,點(diǎn)C落在點(diǎn)C′處,BC′交AD于點(diǎn)E,則線段DE的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com