【題目】如圖,小明的父親在相距2米的兩棵樹間拴了一根繩子,給他做了簡易的秋千,拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時,頭部剛好接觸到繩子.
(1)以水平的地面為x軸,兩棵樹間距離的中點O為原點,建立如圖所示的平面直角坐標系,求出拋物線的解析式;
(2)求繩子的最低點離地面的距離.

【答案】
(1)解:設拋物線的解析式為y=ax2+c.

由題意知拋物線過點(﹣0.5,1)、(1,2.5)

將上述兩點的坐標代入y=ax2+c得: ,解得

∴繩子所在拋物線的解析式為y=2x2+0.5


(2)解:當x=0時,y=2x2+0.5=0.5.

∴繩子的最低點離地面的距離為0.5米


【解析】(1)由題意知拋物線過點(﹣0.5,1)、(1,2.5),接下來,利用待定系數(shù)法求解即可;(2)將x=0代入求得對應的y的值即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D,E分別是邊BC,AC上的點,且BD=EC,∠ADE=∠B.

(1)求證:AD=DE;

(2)若∠ADE=,求ADB的度數(shù)(用含x的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點D,交AB于點H,AC的垂直平分線交BC于點E,交AC于點G,連接AD,AE,則下列結論錯誤的是(
A. =
B.AD,AE將∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形EFGH是由矩形ABCD的外角平分線圍成的. 求證:四邊形EFGH是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。
(1)計算: ﹣( 1+(2﹣ 0
(2)解方程:x2﹣4x+1=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞點A逆時針旋轉(zhuǎn)一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數(shù)為(
A.60°
B.75°
C.85°
D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標;
(3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足SPAB=8,并求出此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與x軸交于點A、B,AB=2,與y軸交于點C,對稱軸為直線x=2,對稱軸交x軸于點M.

(1)求拋物線的函數(shù)解析式;
(2)設P為對稱軸上一動點,求△APC周長的最小值;
(3)設D為拋物線上一點,E為對稱軸上一點,若以點A、B、D、E為頂點的四邊形是菱形,則點D的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結論:①abc<0;②2a+b=0;③當x=﹣1或x=3時,函數(shù)y的值都等于0;④4a+2b+c>0,其中正確結論的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案