【題目】如圖,將△ABC繞點A逆時針旋轉(zhuǎn)一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數(shù)為( )
A.60°
B.75°
C.85°
D.90°
【答案】C
【解析】解:根據(jù)旋轉(zhuǎn)的性質(zhì)知,∠EAC=∠BAD=65°,∠C=∠E=70°. 如圖,設(shè)AD⊥BC于點F.則∠AFB=90°,
∴在Rt△ABF中,∠B=90°﹣∠BAD=25°,
∴在△ABC中,∠BAC=180°﹣∠B﹣∠C=180°﹣25°﹣70°=85°,即∠BAC的度數(shù)為85°.
故選C.
【考點精析】解答此題的關(guān)鍵在于理解旋轉(zhuǎn)的性質(zhì)的相關(guān)知識,掌握①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段.在連接兩點所得的所有線段中任取一條線段,取到長度為 的線段的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點B順時針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點F,則△ACF與△BDF的周長之和為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明的父親在相距2米的兩棵樹間拴了一根繩子,給他做了簡易的秋千,拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時,頭部剛好接觸到繩子.
(1)以水平的地面為x軸,兩棵樹間距離的中點O為原點,建立如圖所示的平面直角坐標系,求出拋物線的解析式;
(2)求繩子的最低點離地面的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)如圖2,△ABC不動,將△EDC繞點C旋轉(zhuǎn)到∠BCE=45°時,試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2 x+m=0有兩個不相等的實數(shù)根.
(1)求實數(shù)m的取值范圍;
(2)在(1)的條件下,化簡: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,∠ADC=45°,把△ABC沿著直線AD對折,點C落在點E的位置,如果BC=12,那么線段BE的長度為( )
A.12
B.12
C.6
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com