【題目】如圖,在RtABC中,∠C90°O為斜邊AB上一點(diǎn),以O為圓心、OA為半徑的圓恰好與BC相切于點(diǎn)D,與AB的另一個交點(diǎn)為E,連接DE

1)請找出圖中與ADE相似的三角形,并說明理由;

2)若AC3AE4,試求圖中陰影部分的面積;

3)小明在解題過程中思考這樣一個問題:如圖中的⊙O的圓心究竟是怎么確定的呢?請你在如圖中利用直尺和圓規(guī)找到符合題意的圓心O,并寫出你的作圖方法.

【答案】(1)見解析;(2)π-;(3)見解析.

【解析】

1BC為圓O的切線,連接OD,可推出∠EAD=ODA=DAC,由∠EDA=DCA=90°,可推出AED∽△ADC
2)根據(jù)AED∽△ADC,可得出AD的長度,再根據(jù)AED的三邊比例關(guān)系,可推出∠AOD=120,再利用扇形面積減三角形的面積即可得到陰影部分面積.
3)①作∠BAC的角平分線交BC邊于點(diǎn)D,②過點(diǎn)DBC的垂線交AB于點(diǎn)O.(注:方法不唯一)

解:(1ACDADE相似,如圖(1)所示,

連接OD,∵⊙O恰好與BC相切于點(diǎn)D,
∴∠ODB=90°,
又∵∠C=90°,
ODAC
∴∠ODA=DAC,
OD=OA
∴∠ODA=OAD,
∴∠OAD=DAC,
AE為⊙O的直徑,
∴∠ADE=90°,
∴∠ADE=C
∴△ACD∽△ADE
2)∵△ACD∽△ADE,

AD=2,
AC=3,根據(jù)勾股定理得CD=,
sinDAC=,
∴∠DAC=EAD=ODA=30°
∴∠AOD=120°,
SOAD=OA2=
S=
3)如圖2所示,作圖方法:
①以A為圓心,AC長為半徑畫弧,交AB于點(diǎn)H,以H、C為圓心,大于CH長為半徑畫弧,交于點(diǎn)G,連接AG,AG即為∠BAC的角平分線,AGBC的交點(diǎn)即為點(diǎn)D
②以D為圓心,DC長為半徑畫弧,交BD于點(diǎn)C′,以C、C′為圓心,大于CC′為半徑畫弧,分別交于點(diǎn)EF,連接EF,EF即為CC′的垂直平分線,EFAB的交點(diǎn)即為點(diǎn)O

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在梯形ABCD中,ADBC,AB=BC,DCBC,且AD=1,DC=3,點(diǎn)P為邊AB上一動點(diǎn),以P為圓心,BP為半徑的圓交邊BC于點(diǎn)Q

(1)AB的長;

(2)當(dāng)BQ的長為時,請通過計(jì)算說明圓P與直線DC的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的頂點(diǎn)A、D分別落在x軸、y軸,OD=2OA=6,ADAB=31.則點(diǎn)B的坐標(biāo)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知P為等邊ABC形內(nèi)一點(diǎn),且PA3cm,PB4 cmPC5 cm,則圖中PBC的面積為________cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項(xiàng)目:A籃球 B乒乓球C羽毛球 D足球,為了解學(xué)生最喜歡哪一種活動項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請回答下列問題:

(1)這次被調(diào)查的學(xué)生共有   人;

(2)請你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;

(3)在平時的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=-x+1與反比例函數(shù)y=(x0)的圖象交于點(diǎn)A,與x軸正半軸交于點(diǎn)B,且SAOB=1,則反比例函數(shù)解析式為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對角線ACBD的交點(diǎn),MBC邊上的動點(diǎn)(點(diǎn)M不與B、C重合),過點(diǎn)CCN垂直DMAB于點(diǎn)N,連結(jié)OM、ON、MN.下列五個結(jié)論:①△CNB≌△DMC;;ONOM;AB=2,則的最小值是1;.其中正確結(jié)論是_________.(只填番號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線yx2+bx+cAB,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動點(diǎn)P在拋物線上.

1)求拋物線的解析式;

2)若動點(diǎn)P在第四象限內(nèi)的拋物線上,過動點(diǎn)Px軸的垂線交直線AC于點(diǎn)D,交x軸于點(diǎn)E,垂足為E,求線段PD的長,當(dāng)線段PD最長時,求出點(diǎn)P的坐標(biāo);

3)是否存在點(diǎn)P,使得ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案