如圖19,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的切線互相垂直,垂足為D.銳角∠DAB的平分線AC交⊙O于點C,作CD⊥AD,垂足為D,直線CD與AB的延長線交于點E.
小題1:求證:AC平分∠DAB
小題2:過點O作線段AC的垂線OE,垂足為E(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
小題3:若CD=4,AC=4,求垂線段OE的長.

小題1:連接OC,∵CD切⊙O于點C,∴OC⊥CD。
又∵AD⊥CD,∴OC∥AD。∴∠OCA=∠DAC!逴C=OA,∴∠OCA=∠OAC。
∴∠OAC=∠DAC!郃C平分∠DAB。 ………………………3分
小題2:過點O作線段AC的垂線OE,如圖所示:…………4分

小題3:在Rt△ACD中,CD=4,AC=4,∴AD===8 。                 ∵OE⊥AC,∴AE=AC=2。  ∵∠OAE=∠CAD ,∠AEO=∠ADC,∴△AEO∽△ADC。
∴=!郞E=×CD=×4=。即垂線段OE的長為 !8分
(1)連接OC,由CD為圓O的切線,根據(jù)切線性質(zhì)得到OC與CD垂直,又AD與CD垂直,根據(jù)平面上垂直于同一條直線的兩直線平行得到AD與OC平行,由平行得一對內(nèi)錯角相等,又因為兩半徑OA與OC相等,根據(jù)等邊對等角,得到一對相等的角,利用等量代換,即可得到∠DAC=∠OAC,即AC為∠DAB的平分線;
(2)以O(shè)為圓心,以大于O到AC的距離為半徑畫弧,與AC交于兩點,分別以這兩點為圓心,以大于這兩點之間距離的一半長為半徑在AC的另一側(cè)畫弧,兩弧交于一點,經(jīng)過此點與點O確定一條直線,即為所求的直線,如圖所示;
(3)在直角三角形ACD中,由CD和AC的長,利用勾股定理求出AD的長,再根據(jù)垂徑定理,由OE與AC 垂直,得到E為AC中點,求出AE的長,由(1)推出的角平分線得一對角相等,再由一對直角相等,根據(jù)兩對對應(yīng)角相等的兩三角形相似,由相似得比例即可求出OE的長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB為00的直徑,弦CDl AB,垂足為點E,連結(jié)OC,若OC= 10,CD =16,則AE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,以O(shè)為圓心的兩個同心圓中,半徑分別為3和5,若大圓的弦AB與小圓相交,則弦AB的長的取值范圍是(  )
A.8≤AB≤10B.8<AB<10
C.8<AB≤10D.6≤AB≤10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)邊長為2a的正方形的中心A在直線l上,它的一組對邊垂直于直線l,半徑為r的⊙O的圓心O在直線l上運動,點A,O之間的距離為d。

小題1:如圖1,當(dāng)r<a時,根據(jù)d與a,r之間關(guān)系,請你將⊙O與正方形的公共點個數(shù)填入下表:
d,a,r之間的關(guān)系
公共點的個數(shù)
d>a+r
0
d=a+r
 
a-r<d<a+r
 
d=a-r
 
d<a-r
 
 
小題2:如圖2,當(dāng)r=a時,根據(jù)d與a,r之間關(guān)系,請你寫出⊙O與正方形的公共點個數(shù),即當(dāng)r=a時,⊙O與正方形的公共點個數(shù)可能有         個。

小題3:如圖3,當(dāng)⊙O與正方形的公共點個數(shù)有5個時,r=      (請用a的代數(shù)式表示r,不必說明理由)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

問題背景:
如圖1,矩形鐵片ABCD的長為2a,寬為a; 為了要讓鐵片能穿過直徑為的圓孔,需對鐵片進行處理(規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔);

探究發(fā)現(xiàn):
小題1:如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點,若將矩形鐵片的四個角去掉,只余下四邊形MNPQ,則此時鐵片的形狀是 _______,給出證明,并通過計算說明此時鐵片都能穿過圓孔;

拓展遷移:
小題2:如圖3,過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點E、F(不與端點重合),沿著這條直線將矩形 鐵片切割成兩個全等的直角梯形鐵片;
 
①當(dāng)BE=DF=時,判斷直角梯形鐵片EBAF能否穿過圓孔,并說明理由;
②為了能使直角梯形鐵片EBAF順利穿過圓孔,請直接寫出線段BE的長度的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙O的直徑AB與弦CD相交于E,弧BC=弧BD,CD∥BF,BF交AD的延長線于F。

小題1:求證:.BF是⊙O的切線
小題2:連結(jié)BC,若⊙O的半徑為4,cos∠BCD=,求線段AD、CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,的直徑,弦于點連結(jié)的周長等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,AB為⊙O的直徑,P為AB延長線上一點,PD切⊙O于C,BC和AD的延長線相交于點E,且AB=AE。 (1)求證: (2)若圓的半徑為1,△ABE是等邊三角形,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在校運動會上,三位同學(xué)用繩子將四根同樣大小的接力棒分別按橫截面如圖(1)、(2)、(3)所示的方式進行捆綁,三個圖中的四個圓心的連線(虛線)分別構(gòu)成菱形、正方形、菱形,如果把三種方式所用繩子的長度分別用來表示,則
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案