【題目】甲、乙兩條輪船同時(shí)從港口A出發(fā),甲輪船以每小時(shí)30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時(shí)15海里的速度沿著正東方向行進(jìn),1小時(shí)后,甲船接到命令要與乙船會(huì)合,于是甲船改變了行進(jìn)的速度,沿著東南方向航行,結(jié)果在小島C處與乙船相遇.假設(shè)乙船的速度和航向保持不變,求:

(1)港口A與小島C之間的距離;
(2)甲輪船后來(lái)的速度.

【答案】
(1)

解:作BD⊥AC于點(diǎn)D,如圖所示:

由題意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,

在Rt△ABD中,

∵AB=30海里,∠BAC=30°,

∴BD=15海里,AD=ABcos30°=15 海里,

在Rt△BCD中,

∵BD=15海里,∠BCD=45°,

∴CD=15海里,BC=15 海里,

∴AC=AD+CD=15 +15海里,

即A、C間的距離為(15 +15)海里.


(2)

解:∵AC=15 +15(海里),

輪船乙從A到C的時(shí)間為 = +1,

由B到C的時(shí)間為 +1﹣1= ,

∵BC=15 海里,

∴輪船甲從B到C的速度為 =5 (海里/小時(shí)).


【解析】(1)根據(jù)題意畫出圖形,再根據(jù)平行線的性質(zhì)及直角三角形的性質(zhì)解答即可.(2)根據(jù)甲乙兩輪船從港口A至港口C所用的時(shí)間相同,可以求出甲輪船從B到C所用的時(shí)間,又知BC間的距離,繼而求出甲輪船后來(lái)的速度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)1小時(shí)后到達(dá)南亞所(景點(diǎn)),游玩一段時(shí)間后按原速前往湖光巖.小明離家1小時(shí)50分鐘,媽媽駕車沿相同路線前往湖光巖,如圖是他們離家的路程ykm)與小明離家時(shí)間xh)的函數(shù)圖象.

1)求小明騎車的速度和在南亞所游玩的時(shí)間;

2)若媽媽在出發(fā)后25分鐘時(shí),剛好在湖光巖門口追上小明,求媽媽駕車的速度及CD所在直線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:平面直角坐標(biāo)系中,A(a,3)、B(b,6)、C(c,1),ab、c都為實(shí)數(shù),并且滿足3b-5c=-2a-18,4bc=3a+10

(1) 請(qǐng)直接用含a的代數(shù)式表示bc

(2) 當(dāng)實(shí)數(shù)a變化時(shí),判斷ABC的面積是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍

(3) 當(dāng)實(shí)數(shù)a變化時(shí),若線段ABy軸相交,線段OB與線段AC交于點(diǎn)P,且SPABSPBC,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將△ABC紙片沿中位線EH折疊,使點(diǎn)A對(duì)稱點(diǎn)D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個(gè)三角形拼合形成一個(gè)矩形,類似地,對(duì)多邊形進(jìn)行折疊,若翻折后的圖形恰能拼合成一個(gè)無(wú)縫隙、無(wú)重疊的矩形,這樣的矩形稱為疊合矩形.

(1)將ABCD紙片按圖2的方式折疊成一個(gè)疊合矩形AEFG,則操作形成的折痕分別是線段________________;S矩形AEFG:S□ABCD=__________

(2)ABCD紙片還可以按圖3的方式折疊成一個(gè)疊合矩形EFGH,若EF=5,EH=12,求AD的長(zhǎng);

(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把該紙片折疊,得到疊合正方形,請(qǐng)你幫助畫出一種疊合正方形的示意圖,并求出AD、BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,點(diǎn)D、E分別是BC、AD的中點(diǎn),CE的延長(zhǎng)線于則四邊形AFBD的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明新家裝修,在裝修客廳時(shí),購(gòu)進(jìn)彩色地磚和單色地磚共100塊,共花費(fèi)5600元.已知彩色地磚的單價(jià)是80/塊,單色地磚的單價(jià)是40/塊.

(1)兩種型號(hào)的地磚各采購(gòu)了多少塊?

(2)如果廚房也要鋪設(shè)這兩種型號(hào)的地磚共60塊,且采購(gòu)地磚的費(fèi)用不超過3200元,那么彩色地磚最多能采購(gòu)多少塊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車間的甲、乙兩名工人分別同時(shí)生產(chǎn)500只同一型號(hào)的零件,他們生產(chǎn)的零件y(只)與生產(chǎn)時(shí)間x(分)的函數(shù)關(guān)系的圖象如圖所示.根據(jù)圖象提供的信息解答下列問題:
(1)甲每分鐘生產(chǎn)零件只;乙在提高生產(chǎn)速度之前已生產(chǎn)了零件 只;
(2)若乙提高速度后,乙的生產(chǎn)速度是甲的2倍,請(qǐng)分別求出甲、乙兩人生產(chǎn)全過程中,生產(chǎn)的零件y(只)與生產(chǎn)時(shí)間x(分)的函數(shù)關(guān)系式;
(3)當(dāng)兩人生產(chǎn)零件的只數(shù)相等時(shí),求生產(chǎn)的時(shí)間;并求出此時(shí)甲工人還有多少只零件沒有生產(chǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程
(1)解方程:x2﹣2x=1;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知點(diǎn)M(0,2),直線y= x+4與兩坐標(biāo)軸分別交于A,B兩點(diǎn),P、Q分別是線段OA,AB上的動(dòng)點(diǎn),則PQ+MP的最小值是

查看答案和解析>>

同步練習(xí)冊(cè)答案