【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點,過點A作AD⊥AB交BE的延長線于點D,CG平分∠ACB交BD于點G,F為AB邊上﹣點,連接CF,且∠ACF=∠CBG.
(1)求證:AF=CG;
(2)寫出圖中長度等于2DE的所有線段.
【答案】(1)詳見解析;(2)長度等于2DE的線段有CF、BG、DG.
【解析】
(1)要證AF=CG,只需證明△AFC≌△CBG即可.
(2)延長CG交AB于H,則CH⊥AB,H平分AB,繼而證得CH∥AD,得出DG=BG和△ADE與△CGE全等,從而證得CF=2DE.
證明:(1)∵∠ACB=90°,CG平分∠ACB,
∴∠ACG=∠BCG=45°,
又∵∠ACB=90°,AC=BC,
∴∠CAF=∠CBF=45°,
∴∠CAF=∠BCG,
在△AFC與△CGB中,
,
∴△AFC≌△CBG(ASA),
∴AF=CG;
(2)延長CG交AB于H,
∵CG平分∠ACB,AC=BC,
∴CH⊥AB,CH平分AB,
∵AD⊥AB,
∴AD∥CG,
∴∠D=∠EGC,
在△ADE與△CGE中,
,
∴△ADE≌△CGE(AAS),
∴DE=GE,
即DG=2DE,
∵AD∥CG,CH平分AB,
∴DG=BG,
∵△AFC≌△CBG,
∴CF=BG,
∴CF=2DE.
∵BG=CF,
∴BG=2DE,
∴DG=2DE,
故長度等于2DE的線段有CF、BG、DG.
科目:初中數學 來源: 題型:
【題目】某物體從P點運動到Q點所用時間為7秒,其運動速度v(米每秒)關于時間t(秒)的函數關系如圖所示.某學習小組經過探究發(fā)現:該物體前進3秒運動的路程在數值上等于矩形AODB的面積.由物理學知識還可知:該物體前t(3<t≤7)秒運動的路程在數值上等于矩形AODB的面積與梯形BDNM的面積之和. 根據以上信息,完成下列問題:
(1)當3<t≤7時,用含t的式子表示v;
(2)分別求該物體在0≤t≤3和3<t≤7時,運動的路程s(米)關于時間t(秒)的函數關系式;并求該物體從P點運動到Q總路程的 時所用的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解
∵<<,即2<<3.
∴的整數部分為2,小數部分為﹣2,
∴1<﹣1<2
∴﹣1的整數部分為1.
∴﹣1的小數部分為﹣2
解決問題:已知:a是﹣3的整數部分,b是﹣3的小數部分,
求:(1)a,b的值;
(2)(﹣a)3+(b+4)2的平方根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道:分式和分數有著很多的相似點.如類比分數的基本性質,我們得到了分式的基本性質;類比分數的運算法則,我們得到了分式的運算法則;等等.小學里,把分子比分母小的分數叫做真分數.類似地,我們把分子整式的次數小于分母整式的次數的分式稱為真分式;反之,稱為假分式.任何一個假分式都可以化成整式與真分式的和的形式,如: ;
(1)下列分式中,屬于真分式的是:________(填序號);
① ② ③ ④
(2)將假分式化成整式與真分式的和的形式: =________+________;
(3)將假分式化成整式與真分式的和的形式: =__________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,∠ABC與∠ACB的平分線交于點O,根據下列條件,求出∠BOC的度數.
(1)已知∠ABC+∠ACB=100°,則∠BOC= .
(2)已知∠A=90°,求∠BOC的度數.
(3)從上述計算中,你能發(fā)現∠BOC與∠A的關系嗎?請直接寫出∠B0C與∠A的關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=2 ,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,三角形ABC的頂點坐標分別是A(0,0),B(6,0),C(5,5).
(1)求三角形ABC的面積;
(2)如果三角形ABC的三個頂點的縱坐標不變,橫坐標增加3個單位長度,得到三角形A1B1C1,試在圖中畫出三角形A1B1C1,并寫出點A1,B1,C1的坐標;
(3)(2)中三角形A1B1C1與三角形ABC的大小、形狀有什么關系?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC,點D、F分別為線段AC、AB上兩點,連接BD、CF交于點E.
(1)若BD⊥AC,CF⊥AB,若BE=4,CE=2,求CD:BF;
(2)若BD平分∠ABC,CF平分∠ACB,如圖2所示,猜想∠BEC與∠A的數量關系;并說明理由.
(3)在(2)的條件下,若∠A=60°,試說明:BC=BF+CD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖8,在平面直角坐標系xOy中,A(0,8),B(0,4),點C在x軸的正半軸上,點D為OC的中點.
(1)當BD與AC的距離等于2時,求線段OC的長;
(2)如果OE⊥AC于點E,當四邊形ABDE為平行四邊形時,求直線BD的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com