【題目】如圖,在中,,的平分線交邊于點(diǎn).以上一點(diǎn)為圓心作,使經(jīng)過(guò)點(diǎn)和點(diǎn).
(1)判斷直線與的位置關(guān)系,并說(shuō)明理由.
(2)若,.
①求的半徑;
②設(shè)與邊的另一個(gè)交點(diǎn)為,求線段,與劣弧所圍成的陰影部分的面積.(結(jié)果保留根號(hào)和)
【答案】(1)相切,理由見(jiàn)解析;(2)①2;②
【解析】
(1)連接OD,根據(jù)平行線判定推出OD∥AC,證明OD⊥BC,根據(jù)切線的判定即可證明;
(2)①根據(jù)含有30°角的直角三角形的性質(zhì)得出OB=2OD=2r,從而求得半徑r的值;
②根據(jù)S陰影=S△BOD-S扇形ODE求出即可.
解:(1)相切,理由如下:
如圖,連接,
平分,
,
,
,
,
,
∵,
,
與相切;
(2)①在和中,
,,
,,
∵,
,
,
解得,即的半徑是;
②在Rt△ACB中,∠B=30°,
∴∠BOD=60°,
∴S扇形ODE=,
∵∠B=30°,OD⊥BC,
∴OB=2OD,
∴AB=3OD,
∵AB=2AC=6,
∴,,
S△BOD=,
S陰影=S△BOD-S扇形ODE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,是延長(zhǎng)線上的定點(diǎn),為邊上的一個(gè)動(dòng)點(diǎn),連接,將射線繞點(diǎn)順時(shí)針旋轉(zhuǎn),交射線于點(diǎn),連接.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段的長(zhǎng)度之間的關(guān)系進(jìn)行了探究.
下面是小東探究的過(guò)程,請(qǐng)補(bǔ)充完整:
(1)對(duì)于點(diǎn)在上的不同位置,畫(huà)圖、測(cè)量,得到了線段的長(zhǎng)度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | |
0.00 | 0.53 | 1.00 | 1.69 | 2.17 | 2.96 | 3.46 | 3.79 | 4.00 | |
0.00 | 1.00 | 1.74 | 2.49 | 2.69 | 2.21 | 1.14 | 0.00 | 1.00 | |
4.12 | 3.61 | 3.16 | 2.52 | 2.09 | 1.44 | 1.14 | 1.02 | 1.00 |
在的長(zhǎng)度這三個(gè)量中,確定_____的長(zhǎng)度是自變量,_____的長(zhǎng)度和_____的長(zhǎng)度都是這個(gè)自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系中,畫(huà)出(1)中所確定的兩個(gè)函數(shù)的圖象;
(3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:當(dāng)時(shí),的長(zhǎng)度約為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,燈桿AB與墻MN的距離為18米,小麗在離燈桿(底部)9米的D處測(cè)得其影長(zhǎng)DE為3m,設(shè)小麗身高為1.6m.
(1)求燈桿AB的高度;
(2)小麗再向墻走7米,她的影子能否完全落在地面上?若能,求此時(shí)的影長(zhǎng);若不能,求落在墻上的影長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若平面直角坐標(biāo)系內(nèi)的點(diǎn)M滿足橫、縱坐標(biāo)都為整數(shù),則把點(diǎn)M叫做“整點(diǎn)”.例如:P(1,0)、Q(2,﹣2)都是“整點(diǎn)”.拋物線y=mx2﹣4mx+4m﹣2(m>0)與x軸交于點(diǎn)A、B兩點(diǎn),若該拋物線在A、B之間的部分與線段AB所圍成的區(qū)域(包括邊界)恰有七個(gè)整點(diǎn),則m的取值范圍是( )
A. ≤m<1B. <m≤1C. 1<m≤2D. 1<m<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,⊙O的半徑為4,點(diǎn)A是⊙O上一點(diǎn),直線l過(guò)點(diǎn)A;P是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),過(guò)點(diǎn)P作PB⊥l于點(diǎn)B,交⊙O于點(diǎn)E,直徑PD延長(zhǎng)線交直線l于點(diǎn)F,點(diǎn)A是的中點(diǎn).
(1)求證:直線l是⊙O的切線;
(2)若PA=6,求PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)用2500元購(gòu)進(jìn)A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià)、標(biāo)價(jià)如下表所示.
類(lèi)型 價(jià)格 | A型 | B型 |
進(jìn)價(jià)(元/盞) | 40 | 65 |
標(biāo)價(jià)(元/盞) | 60 | 100 |
(1)這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?
(2)在每種臺(tái)燈銷(xiāo)售利潤(rùn)不變的情況下,若該商場(chǎng)計(jì)劃銷(xiāo)售這批臺(tái)燈的總利潤(rùn)至少為1400元,問(wèn)至少需購(gòu)進(jìn)B種臺(tái)燈多少盞?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是☉的直徑,為☉上一點(diǎn),是半徑上一動(dòng)點(diǎn)(不與重合),過(guò)點(diǎn)作射線,分別交弦,于兩點(diǎn),過(guò)點(diǎn)的切線交射線于點(diǎn).
(1)求證:.
(2)當(dāng)是的中點(diǎn)時(shí),
①若,判斷以為頂點(diǎn)的四邊形是什么特殊四邊形,并說(shuō)明理由;
②若,且,則_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形.Rt△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(﹣4,1),點(diǎn)B的坐標(biāo)為(﹣1,1).
(1)先將Rt△ABC向右平移5個(gè)單位,再向下平移1個(gè)單位后得到Rt△A1B1C1.試在圖中畫(huà)出圖形Rt△A1B1C1,并寫(xiě)出A1的坐標(biāo);
(2)將Rt△A1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°后得到Rt△A2B2C2,試在圖中畫(huà)出圖形Rt△A2B2C2.并計(jì)算Rt△A1B1C1在上述旋轉(zhuǎn)過(guò)程中C1所經(jīng)過(guò)的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,∠BAC>90°,點(diǎn)D為BC的中點(diǎn),點(diǎn)E在AC上,將△CDE沿DE折疊,使得點(diǎn)C恰好落在BA的延長(zhǎng)線上的點(diǎn)F處,連結(jié)AD,則下列結(jié)論不一定正確的是( 。
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面積相等 D. △ADE和△FDE的面積相等
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com