【題目】某商場用2500元購進A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價、標(biāo)價如下表所示.
類型 價格 | A型 | B型 |
進價(元/盞) | 40 | 65 |
標(biāo)價(元/盞) | 60 | 100 |
(1)這兩種臺燈各購進多少盞?
(2)在每種臺燈銷售利潤不變的情況下,若該商場計劃銷售這批臺燈的總利潤至少為1400元,問至少需購進B種臺燈多少盞?
【答案】(1)A型臺燈購進30盞,B型臺燈購進20盞(2)要使銷售這批臺燈的總利潤不少于1400元,至少需購進B種臺燈27盞
【解析】
(1)根據(jù)題意可得等量關(guān)系:A、B兩種新型節(jié)能臺燈共50盞,A種新型節(jié)能臺燈的臺數(shù)×40+B種新型節(jié)能臺燈的臺數(shù)×65=2500元;設(shè)A型臺燈購進x盞,B型臺燈購進y盞,列方程組即可求得;
(2)根據(jù)題意可知,總利潤=A種新型節(jié)能臺燈的售價﹣A種新型節(jié)能臺燈的進價+B種新型節(jié)能臺燈的售價﹣B種新型節(jié)能臺燈的進價;根據(jù)總利潤不少于1400元,設(shè)購進B種臺燈m盞,列不等式即可求得.
(1)設(shè)A型臺燈購進x盞,B型臺燈購進y盞,
根據(jù)題意,得,
解得:,
答:A型臺燈購進30盞,B型臺燈購進20盞;
(2)設(shè)購進B種臺燈m盞,
根據(jù)題意,得利潤(100﹣65)m+(60﹣40)(50﹣m)≥1400,
解得,m≥,
∵m是整數(shù),
∴m≥27,
答:要使銷售這批臺燈的總利潤不少于1400元,至少需購進B種臺燈27盞.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是某城市街道示意圖,已知與均是等邊三角形(即三條邊都相等,三個角都相等的三角形),點為公交車?空,且點在同一條直線上.
(1)圖中與全等嗎?請說明理由;
(2)連接,寫出與的大小關(guān)系;
(3)公交車甲從出發(fā),按照的順序到達站;公交車乙從出發(fā),按照的順序到達站.若甲,乙兩車分別從兩站同時出發(fā),在各站?康臅r間相同,兩車的平均速度也相同,則哪一輛公交車先到達指定站?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用同樣規(guī)格的黑白兩種顏色的正方形,按如圖①的方式拼圖,請根據(jù)圖中的信息完成下列的問題
(1)在圖②中用了___________塊黑色正方形,在圖③中用了_____________塊黑色正方形;
(2)按如圖的規(guī)律繼續(xù)鋪下去,那么第個圖形要用____________塊黑色正方形;
(3)如果有足夠多的白色正方形,能不能恰好用完塊黑色正方形,拼出具有以上規(guī)律的圖形?如果可以請說明它是第幾個圖形;如果不能,說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A,B,C三點的坐標(biāo)分別為(-6,7)、(-3,0)、(0,3).
(1)畫出△ABC,并求△ABC的面積.
(2)在平面直角坐標(biāo)系中平移△ABC,使點C經(jīng)過平移后的對應(yīng)點為C'(5,4),平移后△ABC得到△A'B'C',畫出平移后的△A'B'C',并寫出點A',B'的坐標(biāo)
(3)P(-3,m)為△ABC中一點,將點P向右平移4個單位后,再向上平移6個單位得到點Q(n,-3),則m= n=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠MON=40°,OE平分∠MON,A,B,C分別是射線OM,OE,ON上的動點(A,B,C不與點O 重合),連接AC交射線OE于點D.設(shè)∠OAC=x°.
(1)如圖①,若AB∥ON,則
①∠ABO的度數(shù)是________.
②當(dāng)∠BAD=∠ABD時,x=________;當(dāng)∠BAD=∠BDA時,x=________.
(2)如圖②,若AB⊥OM,則是否存在這樣的x值,使得△ADB中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC 的∠ABC 的外角平分線 BD 與∠ACB 的外角平分線 CE 交于 P,過 P 作 MN∥AB 交 AC 于M,交 BC 于 N,且 AM=8,BN=5,則 MN=( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=-x2+bx+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式及頂點M的坐標(biāo);
(2)在拋物線的對稱軸上找到點P,使得△PAC的周長最小,并求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高公民法律意識,大力推進國家工作人員學(xué)法用法工作,今年年初某區(qū)組織本區(qū)900名教師參加“如法網(wǎng)”的法律知識考試,該區(qū)A學(xué)校參考教師的考試成績繪制成如下統(tǒng)計圖和統(tǒng)計表(滿分100分,考試分數(shù)均為整數(shù),其中最低分76分)
(1)求A學(xué)校參加本次考試的教師人數(shù);
(2)若該區(qū)各學(xué)校的基本情況一致,試估計該區(qū)參考教師本次考試成績在90.5分以下的人數(shù);
(3)求A學(xué)校參考教師本次考試成績85.5~96.5分之間的人數(shù)占該校參考人數(shù)的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個三位數(shù),如果滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“互異數(shù)”,將一個“互異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為.例如=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以=6.
(1)計算和的值,你發(fā)現(xiàn)了什么規(guī)律?請用自己的語言表達;
(2)若=7,請直接寫出的最小值;
(3)若,都是“互異數(shù)”,其中,(1≤≤9,1≤≤9,,都是正整數(shù)),當(dāng)+=16時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com