【題目】如圖,ABC中,∠A=50°,BDCE是∠ABC,∠ACB的平分線,則∠BOC的度數(shù)為( 。

A.105°B.115°C.125°D.135°

【答案】B

【解析】

根據(jù)∠A=50°,可求出∠ABC+ACB的度數(shù),再根據(jù)角平分線的定義得出∠OBC=ABC,∠OCB=ACB,求出∠OBC+OCB的度數(shù),根據(jù)三角形內(nèi)角和定理求出即可.

∵∠A=50°,

∴∠ABC+ACB=180°A=130°,

BO、CO分別是△ABC中∠ABC、∠ACB的角平分線,

∴∠OBC=ABC,∠OCB=ACB

∴∠OBC+OCB=(ABC+ACB)=65°,

∴∠BOC=180°(OBC+OCB)=180°65°=115°.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在中,,.點(diǎn)內(nèi)一點(diǎn),且

1)求證:

2,延長線上的一點(diǎn),且.如圖(2),

①求證:平分

②若點(diǎn)在線段上,且,請判斷、的數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來網(wǎng)約車十分流行,初三某班學(xué)生對美團(tuán)滴滴兩家網(wǎng)約車公司各10名司機(jī)月收入進(jìn)行了一項(xiàng)抽樣調(diào)查,司機(jī)月收入(單位:千元)如圖所示:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均月收入/千元

中位數(shù)/千元

眾數(shù)/千元

方差/千元2

美團(tuán)

6

6

1.2

滴滴

6

4

(1)完成表格填空;

(2)若從兩家公司中選擇一家做網(wǎng)約車司機(jī),你會選哪家公司,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,OD⊥BCD,∠OCD=40°,則弦BC所對圓周角的度數(shù)是( 。

A. 40° B. 50° C. 50°130° D. 40°140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB⊙O的直徑,D⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD.

(1)求證:BD平分∠ABC

(2) 當(dāng)∠ODB=30°時(shí),求證:BC=OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在鈍角△ABC中,∠C=45°,AE⊥BC,垂足為E點(diǎn),且ABAC的長度為方程x2﹣9x+18=0的兩個(gè)根,⊙O△ABC的外接圓.

求:(1)⊙O的半徑;

(2)BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)南充市創(chuàng)建全國衛(wèi)生城市的號召,某校1 500名學(xué)生參加了衛(wèi)生知識競賽,成績記為A、B、C、D四等。從中隨機(jī)抽取了部分學(xué)生成績進(jìn)行統(tǒng)計(jì),繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,根據(jù)圖表信息,以下說法不正確的是( )

A.樣本容量是200

B.D等所在扇形的圓心角為15°

C.樣本中C等所占百分比是10%

D.估計(jì)全校學(xué)生成績?yōu)锳等大約有900人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD的兩邊AB,AD的長是關(guān)于x的方程x2mx0的兩個(gè)實(shí)數(shù)根.

(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長;

(2)AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以ABC的一邊為邊畫等腰三角形,使得它的第三個(gè)頂點(diǎn)在ABC的其他邊上,則可以畫出的不同的等腰三角形的個(gè)數(shù)最多為( 。

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

同步練習(xí)冊答案