【題目】如圖,在鈍角△ABC中,∠C=45°,AE⊥BC,垂足為E點(diǎn),且AB與AC的長(zhǎng)度為方程x2﹣9x+18=0的兩個(gè)根,⊙O是△ABC的外接圓.
求:(1)⊙O的半徑;
(2)BE的長(zhǎng).
【答案】(1)OB =3;(2)BE=.
【解析】
(1)連接OB,解方程求出AC、AB,根據(jù)勾股定理求出半徑;
(2)根據(jù)題意得到△AEC為等腰直角三角形,根據(jù)勾股定理計(jì)算即可.
解:(1)連接OB,
解方程x2﹣9x+18=0,
得,x1=3,x2=6,
由圖形可知,AC=3,AB=6,
由圓周角定理得,∠AOB=2∠C=90°,
∴△AOB為等腰直角三角形,
∴OB=AB=3;
(2)∵∠C=45°,AE⊥BC,
∴△AEC為等腰直角三角形,
∴AE=AC=,
∴BE==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+b的圖象與x軸交于點(diǎn)A(2,0),與反比例函數(shù)y=的圖象交于點(diǎn)B(3,n).
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P為x軸上的點(diǎn),且△PAB的面積是2,則點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生書(shū)寫(xiě)漢字的能力,增強(qiáng)保護(hù)漢字的意識(shí),我市舉辦了首屆“漢字聽(tīng)寫(xiě)大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)聽(tīng)寫(xiě)50個(gè)漢字,若每正確聽(tīng)寫(xiě)出一個(gè)漢字得1分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績(jī)x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 8 |
第3組 | 35≤x<40 | 16 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請(qǐng)結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測(cè)試成績(jī)不低于40分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是多少?
(4)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對(duì)抗練習(xí),且4名男同學(xué)每組分兩人,求小宇與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有兩輛玩具車(chē)進(jìn)行30米的直跑道比賽,兩車(chē)從起點(diǎn)同時(shí)出發(fā),A車(chē)到達(dá)終點(diǎn)時(shí),B車(chē)離終點(diǎn)還差12米,A車(chē)的平均速度為2.5米/秒.
(1)求B車(chē)的平均速度;
(2)如果兩車(chē)重新比賽,A車(chē)從起點(diǎn)退后12米,兩車(chē)能否同時(shí)到達(dá)終點(diǎn)?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若調(diào)整A車(chē)的平均速度,使兩車(chē)恰好同時(shí)到達(dá)終點(diǎn),求調(diào)整后A車(chē)的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分線(xiàn),則∠BOC的度數(shù)為( 。
A.105°B.115°C.125°D.135°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD內(nèi)接于⊙O,圓心O是正方形的對(duì)稱(chēng)中心,⊙O的面積為S1,正方形的面積為S2,則以圓心O為頂點(diǎn),作∠MON=90°,將∠MON繞O點(diǎn)旋轉(zhuǎn),OM、ON分別與⊙O交于E、F,分別于正方形ABCD交于G、H,設(shè)由OE、OF、EF及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S,那么:
(1)如圖①,當(dāng)OM經(jīng)過(guò)點(diǎn)A時(shí),S、S1、S2之間的關(guān)系(用S1、S2的代數(shù)式表示S)為 ;
(2)如圖②,當(dāng)OM⊥AB交于點(diǎn)G時(shí),①中的結(jié)論還成立嗎?并說(shuō)明理由;
(3)如圖③,∠MON旋轉(zhuǎn)到任意位置時(shí),則①中的結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于點(diǎn)H,連接CH.
(1)求證:△ACD≌△BCE;
(2)求證:CH平分∠AHE;
(3)求∠CHE的度數(shù).(用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn),求:
(1)直線(xiàn)與x軸,y軸的交點(diǎn)坐標(biāo);
(2)若點(diǎn)(a,1)在圖象上,則a值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為“厲行節(jié)能減排,倡導(dǎo)綠色出行”,某公司擬在我縣甲、乙兩個(gè)街道社區(qū)試點(diǎn)投放一批共享單車(chē)(俗稱(chēng)“小黃車(chē)”),這批自行車(chē)包括A、B兩種不同款型,投放情況如下表:
成本單價(jià) (單位:元) | 投放數(shù)量(單位:輛) | 總價(jià)(單位:元) | |
A型 | 50 | 50 | |
B型 | 50 |
| |
成本合計(jì)(單位:元) | 7500 |
(1)根據(jù)表格填空:
本次試點(diǎn)投放的A、B型“小黃車(chē)”共有 輛;用含有的式子表示出B型自行車(chē)的成本總價(jià)為 ;
(2)試求A、B兩種款型自行車(chē)的單價(jià)各是多少元?
(3)經(jīng)過(guò)試點(diǎn)投放調(diào)查,現(xiàn)在該公司決定采取如下方式投放A型“小黃車(chē)”:甲街區(qū)每100人投放n輛,乙街區(qū)每100人投放(n+2)輛,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個(gè)街區(qū)共有人,求甲街區(qū)每100人投放A型“小黃車(chē)”的數(shù)量.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com