設(shè)y=,a、b、c、d都是有理數(shù),x是無(wú)理數(shù),求證:(1)當(dāng)bc=ad時(shí),y是有理數(shù);(2)當(dāng)bc≠ab時(shí),y是無(wú)理數(shù).

答案:
解析:

  (1)①c、d不能同時(shí)為0,否則cx+d=0,y無(wú)意義

  ②若c=0,由bc=ad,d≠0,得a=0,∴y=是有理數(shù)若d=0,則c≠0,bc=ad,得b=0,此時(shí)y=是有理數(shù)若c≠0且d≠0,由bc=ad得a=,代入y得,y=,∴y是有理數(shù)

  (2)設(shè)bc≠ad時(shí),y是有理數(shù),則(ax+b)=(cx+d)y即(cy-a)x+(dy-b)=0,因?yàn)閏y-a,dy-b是有理數(shù),x是無(wú)理數(shù),所以一定有cy-a=0且dy-b=0,從而bc=cdy=(cy)d=ad,與bc≠ad矛盾,從而y不是有理數(shù),y一定是無(wú)理數(shù)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分,第(1)小題滿分4分,第(2)、(3)小題滿分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.點(diǎn)PAB邊上任意一點(diǎn),直線PEAB,與邊ACBC相交于E.點(diǎn)M在線段AP上,點(diǎn)N在線段BP上,EMEN,

(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),求CM的長(zhǎng);

(2)如圖2,當(dāng)點(diǎn)E在邊AC上時(shí),點(diǎn)E不與點(diǎn)AC重合,設(shè)APx,BNy,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出函數(shù)的定義域;

(3)若△AME∽△ENB(△AME的頂點(diǎn)A、M、E分別與△ENB的頂點(diǎn)E、NB對(duì)應(yīng)),求AP的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)同學(xué)們認(rèn)真閱讀下面材料,然后解答問(wèn)題。(6分)

解方程(x2-1)2-5(x-1)+4=0

解:設(shè)y=x2-1

則原方程化為:y2-5y+4=0   ①   ∴y1=1 y2=4

當(dāng)y=1時(shí),有x2-1=1,即x2=2   ∴x=±

當(dāng)y=4時(shí),有x2-1=4,即x2=5   ∴x=±

∴原方程的解為:x1=- x2= x3=- x4=

解答問(wèn)題:

⑴填空:在由原方程得到①的過(guò)程中,利用________________法達(dá)到了降次的目的,體現(xiàn)了________________的數(shù)學(xué)思想。

⑵解方程-3(-3)=0

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,AC=3,BC=4,CD是斜邊AB上的高,點(diǎn)E在斜邊AB上,過(guò)點(diǎn)E作直線與△ABC的直角邊相交于點(diǎn)F,設(shè)AE=x,△AEF的面積為y.

(1)求線段AD的長(zhǎng);

(2)若EF⊥AB,當(dāng)點(diǎn)E在線段AB上移動(dòng)時(shí),

①求y與x的函數(shù)關(guān)系式(寫(xiě)出自變量x的取值范圍)

②當(dāng)x取何值時(shí),y有最大值?并求其最大值;

(3)若F在直角邊AC上(點(diǎn)F與A、C兩點(diǎn)均不重合),點(diǎn)E在斜邊AB上移動(dòng),試問(wèn):是否存在直線EF將△ABC的周長(zhǎng)和面積同時(shí)平分?若存在直線EF,求出x的值;若不存在直線EF,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,正方形紙片ABCD的邊長(zhǎng)是4,點(diǎn)M、N分別在兩邊AB和CD上(其中點(diǎn)N不與點(diǎn)C重合),沿直線MN折疊該紙片,點(diǎn)B恰好落在AD邊上點(diǎn)E處.

【小題1】(1)設(shè)AE=x,四邊形AMND的面積為 S,求 S關(guān)于x 的函數(shù)解析式,并指明該函數(shù)的定義域;
【小題2】(2)當(dāng)AM為何值時(shí),四邊形AMND的面積最大?最大值是多少?
【小題3】(3)點(diǎn)M能是AB邊上任意一點(diǎn)嗎?請(qǐng)求出AM的取值范圍.  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(9分)如圖所示,在邊長(zhǎng)為1的正方形ABCD中,一直角三角尺PQR的直角頂點(diǎn)P在對(duì)角線AC上移動(dòng),直角邊PQ經(jīng)過(guò)點(diǎn)D,另一直角邊與射線BC交于點(diǎn)E.
⑴試判斷PE與PD的大小關(guān)系,并證明你的結(jié)論;
⑵連接PB,試證明:△PBE為等腰三角形;
⑶設(shè)AP=x,△PBE的面積為y,
①求出y關(guān)于x 函數(shù)關(guān)系式;
②當(dāng)點(diǎn)P落在AC的何處時(shí),△PBE的面積最大,此時(shí)最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案