【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點(diǎn),點(diǎn)C[]為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線AB與CD交點(diǎn)E的坐標(biāo);
(2)動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個(gè)單位長度的速度向終點(diǎn)D運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)N從點(diǎn)A出發(fā),沿線段AO以每秒1個(gè)單位長度的速度向終點(diǎn)O運(yùn)動(dòng),過點(diǎn)P作,垂足為H,連接NP.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為秒.
①若△NPH的面積為1,求的值;
②點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對稱點(diǎn),問是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒有,請說明理由.
【答案】(1) A(-3,0),B(0,4).(2)①1,2②BP+PH+HQ有最小值,(-2,2)
【解析】
試題分析:(1)讓y=0求得x的值可得A的坐標(biāo),(0,b)為B的坐標(biāo),讓y=可得交點(diǎn)的縱坐標(biāo),代入直線解析式可得交點(diǎn)的橫坐標(biāo);
(2)由△AMN∽△ABO,得出△MPH的面積,再利用由△HPE∽△HFM,表示出△PEH的面積,即可得出答案.
(3)當(dāng)點(diǎn)C,H,Q在同一直線上時(shí),CH+HQ的值最小,利用平行四邊形的性質(zhì)得出即可.
試題解析:(1) A(-3,0),B(0,4).
當(dāng)y=2時(shí),
所以直線AB與CD交點(diǎn)的坐標(biāo)為
(2)①當(dāng)0<t<時(shí),
解得
②當(dāng)時(shí),
解得
②BP+PH+HQ有最小值.
連接PB,CH,則四邊形PHCB是平行四邊形.
∴BP=CH.
∴BP+PH+HQ=CH+HQ+2.
當(dāng)點(diǎn)C,H,Q在同一直線上時(shí),CH+HQ的值最小
∵點(diǎn)C,Q的坐標(biāo)分別為(0,2),(-6,-4),
∴直線CQ的解析式為y=x+2,
∴點(diǎn)H的坐標(biāo)為(-2,0).因此點(diǎn)P的坐標(biāo)為(-2,2)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點(diǎn),點(diǎn)C為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線AB與CD交點(diǎn)E的坐標(biāo);
(2)動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個(gè)單位長度的速度向終點(diǎn)D運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)N從點(diǎn)A出發(fā),沿線段AO以每秒1個(gè)單位長度的速度向終點(diǎn)O運(yùn)動(dòng),過點(diǎn)P作,垂足為H,連接NP.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
① 若△NPH的面積為1,求t的值;
② 點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對稱點(diǎn),問是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴(yán)重,交警對某雷達(dá)測速區(qū)檢測到的一組汽車的時(shí)速數(shù)據(jù)進(jìn)行整理,得到其頻數(shù)及頻率如表(未完成):
時(shí)速數(shù)據(jù)段 | 頻數(shù) | 頻率 |
30﹣40 | 10 | 0.05 |
40﹣50 | 36 | ___ |
50﹣60 | ___ | 0.39 |
60﹣70 | ___ | ___ |
70﹣80 | 20 | 0.10 |
總計(jì) | 200 | 1 |
(1)請你把表中的數(shù)據(jù)填寫完整;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)如果汽車時(shí)速超過60千米即為違章,則這次檢測到的違章車輛共有 輛.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若原產(chǎn)量為n噸,增產(chǎn)30%后的產(chǎn)量為( )
A. 30%n噸 B. (1﹣30%)n噸 C. (1+30%)n噸 D. (n+30%)噸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)六邊形的外角和等于a,五邊形的內(nèi)角和等于b,則a與b的關(guān)系是( )
A.a>b
B.b=a+180°
C.a<b
D.a=b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P在△ABC的邊AC上,下列條件中,不能判斷△ABP∽△ACB的是( )
A.∠ABP=∠C B.∠APB=∠ABC C.AB2=APAC D.=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=ax2(a≠0)的圖象與a的符號有關(guān)的是( 。
A.頂點(diǎn)坐標(biāo)
B.開口方向
C.開口大小
D.對稱軸
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com