如圖,鈍角三角形ABC的面積為15,最長(zhǎng)邊AB=10,BD平分∠ABC,點(diǎn)M、N分別是BD、BC上的動(dòng)點(diǎn),則CM+MN的最小值為   
【答案】分析:過點(diǎn)C作CE⊥AB于點(diǎn)E,交BD于點(diǎn)M,過點(diǎn)M作MN⊥BC于N,則CE即為CM+MN的最小值,再根據(jù)三角形的面積公式求出CE的長(zhǎng),即為CM+MN的最小值.
解答:解:過點(diǎn)C作CE⊥AB于點(diǎn)E,交BD于點(diǎn)M,過點(diǎn)M作MN⊥BC于N,
∵BD平分∠ABC,ME⊥AB于點(diǎn)E,MN⊥BC于N,
∴MN=ME,
∴CE=CM+ME=CM+MN的最小值.
∵三角形ABC的面積為15,AB=10,
×10•CE=15,
∴CE=3.
即CM+MN的最小值為3.
故答案為3.
點(diǎn)評(píng):本題考查了軸對(duì)稱-最短路線問題,關(guān)鍵是畫出符合條件的圖形,題目具有一定的代表性,是一道比較好的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•許昌一模)如圖,鈍角三角形ABC的面積為15,最長(zhǎng)邊AB=10,BD平分∠ABC,點(diǎn)M、N分別是BD、BC上的動(dòng)點(diǎn),則CM+MN的最小值為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•青海)如圖(*),四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請(qǐng)你認(rèn)真閱讀下面關(guān)于這個(gè)圖的探究片段,完成所提出的問題.
(1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個(gè)三角形全等,但△ABE和△ECF顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強(qiáng)寫出了如下的證明過程:
證明:如圖1,取AB的中點(diǎn)M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點(diǎn)E,M分別為正方形的邊BC和AB的中點(diǎn)
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請(qǐng)你證明這一結(jié)論.
(3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請(qǐng)你完成證明過程給小強(qiáng)看,若不成立請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,鈍角三角形ABC的面積為15,最長(zhǎng)邊AB=10,BD平分∠ABC,點(diǎn)M、N分別是BD、BC上的動(dòng)點(diǎn),則CM+MN的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年青海省中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖(*),四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請(qǐng)你認(rèn)真閱讀下面關(guān)于這個(gè)圖的探究片段,完成所提出的問題.
(1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個(gè)三角形全等,但△ABE和△ECF顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強(qiáng)寫出了如下的證明過程:
證明:如圖1,取AB的中點(diǎn)M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點(diǎn)E,M分別為正方形的邊BC和AB的中點(diǎn)
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請(qǐng)你證明這一結(jié)論.
(3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請(qǐng)你完成證明過程給小強(qiáng)看,若不成立請(qǐng)你說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案