【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為D,E,BE與CD相交于點(diǎn)O,且∠1=∠2,則下列結(jié)論正確的個(gè)數(shù)為( )
①B=∠C;②△ADO≌△AEO;③△BOD≌△COE;④圖中有四組三角形全等.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】D
【解析】
先根據(jù)角平分線性質(zhì)可得到OD=OE,根據(jù)垂直的定義得到∠BDO=∠CEO=90°,則可利用“ASA”判斷△BDO≌△CEO,可得∠B=∠C;根據(jù)AAS可證△ABO≌△ACO;根據(jù)HL也可證△ADO≌△AEO,可得AD=AE;然后根據(jù)AAS,可證△ADC≌△AEB.
∵CD⊥AB,BE⊥AC,∠1=∠2,
∴OD=OE,∠BDO=∠CEO=90°,
在△BDO和△CEO中
∴△BDO≌△CEO(ASA),
∴∠B=∠C.
同理,根據(jù)全等三角形的判定:
由
得△ABO≌△ACO(AAS);
由
得Rt△ADO≌Rt△AEO(HL);
由
得△ADC≌△AEB(AAS).
所以,共有4對全等三角形.
故選:D
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長CB1交直線l于點(diǎn)A1 , 作正方形A1B1C1B2 , 延長C1B2交直線l于點(diǎn)A2 , 作正方形A2B2C2B3 , 延長C2B3交直線l于點(diǎn)A3 , 作正方形A3B3C3B4 , …,依此規(guī)律,則A2016A2017= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)M,MN⊥AC于點(diǎn)N.
(1)求證:MN是⊙O的切線;
(2)若∠BAC=120°,AB=2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店老板第一次用1000元購進(jìn)一批文具,很快銷售完畢;第二次購進(jìn)時(shí)發(fā)現(xiàn)每件文具進(jìn)價(jià)比第一次上漲了2.5元.老板用2500元購進(jìn)了第二批文具,所購進(jìn)文具的數(shù)量是第一次購進(jìn)數(shù)量的2倍,同樣很快銷售完畢,兩批文具的售價(jià)為每件15元.
(1)問第二次購進(jìn)了多少件文具?
(2)文具店老板第一次購進(jìn)的文具有30元的損耗,第二次購進(jìn)的文具有125元的損耗,問文具店老板在這兩筆生意中是盈利還是虧本?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線L上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是、、、,則=( )
A. 5 B. 4 C. 6 D. 、10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=∠2,P為BN上一點(diǎn),且PD⊥BC于點(diǎn)D,AB+BC=2BD.試說明:∠BAP+∠BCP=180°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形,兩條直角邊分別為6cm,8cm,斜邊長為10cm,若分別以一邊旋轉(zhuǎn)一周(①結(jié)果用π表示;②你可能用到其中的一個(gè)公式,V圓柱=πr2h,V球體=,V圓錐=h)
(1)如果繞著它的斜邊所在的直線旋轉(zhuǎn)一周形成的幾何體是?
(2)如果繞著它的直角邊6所在的直線旋轉(zhuǎn)一周形成的幾何體的體積是多少?
(3)如果繞著它的斜邊10所在的直線旋轉(zhuǎn)一周形成的幾何體的體積與繞著直角邊8所在的直線旋轉(zhuǎn)一周形成的幾何體的體積哪個(gè)大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,連接BD,點(diǎn)O是BD的中點(diǎn),若M、N是邊AD上的兩點(diǎn),連接MO、NO,并分別延長交邊BC于兩點(diǎn)M′、N′,則圖中的全等三角形共有( 。
A. 2對 B. 3對 C. 4對 D. 5對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長方形OABC的邊OA在數(shù)軸上,O為原點(diǎn),長方形OABC的面積為12,OC邊長為3.
(1)數(shù)軸上點(diǎn)A表示的數(shù)為________.
(2)將長方形OABC沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的長方形記為O′A′B′C′,移動(dòng)后的長方形O′A′B′C′與原長方形OABC重疊部分(如圖2中陰影部分)的面積記為S.
①當(dāng)S恰好等于原長方形OABC面積的一半時(shí),數(shù)軸上點(diǎn)A′表示的數(shù)是多少?
②設(shè)點(diǎn)A的移動(dòng)距離AA′=x.
(ⅰ)當(dāng)S=4時(shí),求x的值;
(ⅱ)D為線段AA′的中點(diǎn),點(diǎn)E在線段OO′上,且OE=OO′,當(dāng)點(diǎn)D,E所表示的數(shù)互為相反數(shù)時(shí),求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com